Math is Cool High School Championships – October 2009 9-12 Individual Test Solutions

1	9	48=3+5x, x=9
2	196 π [cm ²]	$\pi r^2 = \pi 14^2 = 196\pi$
3	1458 [bunnies]	The total number of bunnies triples every 2 months. 2x3^6=1458
4	247 [pages]	Work backwards, 4470-1000=3470 divided by 500 gives 6.94 per book. Subtract 2.00 gives 4.94 / .02 = 247.
5	4√13 [cm]	$c^2 = a^2 + b^2$
		$64 + 144 = 16(4 + 9) c = 4\sqrt{13}$
6	16	The largest chord of a circle is the diameter, which is twice the length of the radius. 16.
7	74 [tickets]	175-94+1 minus 8 tickets ending in 0.
8	25	6 and one-fourth percent is 1/16. 1/16 of 400 is 25.
9	12 [edges]	An octahedron is composed of two square pyramids connect at their bases.
10	True	The perpendicular bisector will go through all the points equidistant from the ends of the chord - one of which is the center.
11	19/5	Square b first; order of operations.
12	12	There are three "different" placements for 'X'. $ \begin{bmatrix} X & 1 & 2 \\ - & 3 & 4 \\ - & - & 5 \end{bmatrix} \begin{bmatrix} 6 & X & - \\ 11 & 12 & - \\ - & X & - \\ - & - & - \end{bmatrix} $
13	7	The successive powers end in 7, 9, 3, 1, 7, Since 2009 has remainder 1 when divided by 4, 7^2009 will end in 7.
14	84	(23-16)12 = 7×12 = 84
15	1/221	$\frac{4}{52} \times \frac{3}{51} = \frac{1}{13} \times \frac{1}{17} = \frac{1}{221}$
16	385	The formula is n(n+1)(2n+1)/6= 10(11)(21)/6=385.
17	9	Let $x = 2\sqrt{3} + 2\sqrt{3} +$, thus: $x = 2\sqrt{3} + x$ $x^{2} = 4(3 + x)$ $x^{2} - 4x - 12 = 0$ (x - 6)(x + 2) = 0 x = 6 x + 3 = 9

18	18 $x + 3y = 5$ The slope of the original line is 3 so the perpendicular Fit y=-x/3+b to the point (-1,2), b=5/3. Then multiply simplify to x + 3y=5. Shortcut: interchange the coeff	
19	75 [mph]	and change one sign, then fit the constant to the point. The average speed is given by $ave = \frac{2ab}{2}$. So $60 = \frac{2(50)b}{2}$ and b=75.
20	144	a+b $50+b24-4*6 A is already square so 24*6-144 is the smallest square$
20	1 1 1	
21	4π or 4 pi	Complete the squares and divide by the coefficients of the square
		terms gives: $\frac{(x-1)^2}{2} + \frac{(y+2)^2}{8} = 1$. So ab=4 and the area is 4pi.
22	1	Let the answer be x, so $x=2/(1+x)$ or $x^2+x-2=0$. Therefore $x=-2$
		or 1 - choose the positive solution.
23	320 [ways]	5 choices for the first stripe and then 4 for each of the other 3.
		5x4x4x4=320
24	35	100%=2.5(40%), so 2.5(14)=35 students total.
25	15	The sum of 3 sides must be greater than the 4 th . So, the smallest
		it can be is 2 and the largest is 16.
26	15π	$\frac{25\min}{60\min}\pi(6in)^2 = 15\pi sq.in.$
27	12,960	There are 30 possibilities for the first number, 24 for the second and 18 for the third. (30)(24)(18)=12960.
28	6	This means the distance between 2m and 5 is less than 6 so 2m
		must be between -1 and 11. m is 0,1,2,3,4 or 5.
29	18 [chickens]	18 chickens can then lay 10 eggs in two days and 20 in four days.
30	13/7	The dot product (x+1)2+5(x-3)=0 solving yields x=13/7.
31	2/3	Change all bases to 2 and divide by the RHS to get: $2^{3x^2+7x-6} = 2^0$. (3x-2)(x+3)=0
32	60	The determinant of the product is the product of determinants, so
		the answer is:
		[(4(3)-2(1)][2(3)-6(0)]=60
33	7/125	There are a total of 125 possibilities (5x5x5) and six ways to get
		six (1,2,3 in any order) and 2,2,2.
34	$(-\infty,-2)\cup\left(\frac{3}{2},2\right)$	Subtract the RHS and simplify, factor to get $\frac{(2x-3)(z+2)}{2(z-2)} < 0$.
		For the product to be < 0, one or all three must be < 0.
35	(1,1,0)	Divide numerator and denominator by (x+3) which causes a hole in
		the graph at x=-3. The resultant function $(x-2)/(2x+1)$ has a
		vertical asym. at x=-1/2 and horizontal asym at $\frac{1}{2}$.

36	1	The terms are: $3^{\frac{1}{2}}$, $3^{\frac{1}{3}}$, $3^{\frac{1}{6}}$. The common ratio is $3^{-\frac{1}{6}}$ which makes	
		the next term 3^0 = 1.	
37	175/396	This is the hypergeometric distribution. There are 5C2=10 ways of	
		picking the blue and 7C3=35 ways for the red and 12C5 ways overall.	
38	20 [ways]	Take 2 chairs away and let the 3 students sit in any chairs they	
		like. This can be done in 6C3=20 ways. Replace the two chairs	
		between the students.	
39	2	Start with	
		$\sqrt{49+12\sqrt{10}}=\sqrt{\varkappa}+\sqrt{\gamma}$	
		$49 + 2\sqrt{360} = x + y + 2\sqrt{xy}$ so	
		<i>x</i> = 9, <i>y</i> = 40	
		$\sqrt{4+\sqrt{9}+\sqrt{40}}=\sqrt{a}+\sqrt{b}$	
		$7 + 2\sqrt{10} = x + b + 2\sqrt{ab}$	
		a = 2, b = 5	
40	6,8 [in any	c/a=4(12)=48; -b/a=4+10=14. The sum of the roots is 14 and the	
	order]	product is 48. The roots are then 6 and 8.	

1	A	$\frac{4}{5}x = 2(x-3)$
		=2x-6
		$6 = x \left(2 - \frac{4}{5}\right)$
		$6 = \left(\frac{6}{5}\right) \mathbf{x}$
2	C	x = 5 Downite each term of the difference of two fractions $[1/1 - 1/2] + [1/2 - 1/3] + 1/2$
2	C	= 1/20 = 1/20 = 19/20.
3	В	There are 15 ways of obtaining a sum of 7 with a roll of 3 dice, out of 216.
		(5,1,1), (4,2,1), (4,1,2), (3,3,1), (3,1,3), (3,2,2), (2,4,1), (2,3,2), (2,2,3), (2,1,4),
		(1,5,1), (1,4,2), (1,3,3), (1,4,2), (1,5,1).
4	A	Each piece of the sum must be zero giving two equations in x and y. Solving
		yields: x=2,y=-9
5	D	Prime factorize 780: $780 = 2^2 3^1 5^1 13^1$. The expansion of the following
		expression yields the sum of all factors of 780:
		$(2^{0} + 2^{1} + 2^{2})(3^{0} + 3^{1})(5^{0} + 5^{1})(13^{0} + 13^{1})$
		S = (1+2+4)(1+3)(1+5)(1+14)
		=(7)(4)(6)(14)
		=2352
6	E	In the plane determined by the three points, there is a single point (the
		circumcenter). In space, the points form the line perpendicular to the plane
		going through the point.
7	В	There are 8C3=56 ways to choose three squares and 5 ways to get three in a
		row. 2 vertical, 2 horizontal and 1 diagonal.
8	D	The number of arrangements of the letters in the word MANHATTAN is
		equivalent to: <u>9!</u> = 15120
9	В	There are six ways to reorder the outfits; only TFW and FWT have all the
		outfits in the wrong order.

Math is Cool High School Championships - October 2009 9-10 Individual Multiple Choice Test Solutions

1	Δ	4
1	^	$\frac{1}{5}x = 2(x-3)$
		= 2x - 6
		$6 = x \left(2 - \frac{4}{5}\right)$
		$6 = \left(\frac{6}{5}\right) \mathbf{x}$
_		C = X
2	C	Rewrite each term as the difference of two fractions. $[1/1 - 1/2]+[1/2 - 1/3] + (1/10 - 1/2) = 1 - 1/20 = 10/20$
2	0	$ = \frac{1}{12} + \frac{1}{12} + \frac{1}{120} = 1 + \frac{1}{120} + \frac{19}{20} = 1 + \frac{19}{20} = \frac{19}{2$
3	В	There are 15 ways of obtaining a sum of 7 with a roll of 3 dice, out of 210.
		(5,1,1), (4,2,1), (4,1,2), (3,3,1), (3,1,3), (3,2,2), (2,4,1), (2,3,2), (2,2,3), (2,1,4),
_		
4	С	The function $\sin(2x)$ has period π and $\cos(3x)$ has period $2/3\pi$; the least
		common multiple is 2π .
5	D	Prime factorize 780: $780 = 2^2 3^1 5^1 13^1$. The expansion of the following
		expression yields the sum of all factors of 780:
		$(2^{0}+2^{1}+2^{2})(3^{0}+3^{1})(5^{0}+5^{1})(13^{0}+13^{1})$
		S = (1+2+4)(1+3)(1+5)(1+14)
		=(7)(4)(6)(14)
		=2352
6	E	In the plane determined by the three points, there is a single point (the
		circumcenter). In space, the points form the line perpendicular to the plane
		going through the point.
7	В	Use the identity: $\frac{1}{\log_a(b)} = \log_b(a)$ on each term. Since the base is now the
		same, we can combine to get log _{20!} (20!)=1
8	D	$d' = 8\begin{vmatrix} 4 & 1 \\ 6 & 9 \end{vmatrix} - 0\begin{vmatrix} 3 & 2 \\ 6 & 9 \end{vmatrix} + 1\begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$
		Expansion by minors, repeatedly: $= 8(36-6) + 1(3-8)$
		= 240 - 5 = 235
9	В	There are six ways to reorder the outfits; only TFW and FWT have all the
		outfits in the wrong order.

Math is Cool High School Championships – October 2009 11-12 Individual Multiple Choice Test Solutions

1	145	$h = 2(30) + \frac{5}{6}(30) = 85$	
	[aegrees]	$m = \frac{5}{2}(360) = 300$	
		6 3 360 + 85 - 300 = 145 deg	
2	95 [hippos]	$h = 3i - 4; i = \frac{1}{2}(h - 29); h = 95$	
3	5/2	The product of the roots is -(-5)/2.	
4	88	$ab = \frac{(a+b)^2 - a^2 - b^2}{2}$	
5	23	5(7)-5-7=35-12=23.	
	[cents]	24=2(5)+2(7), 25=5(5), 26=1(5)+3(7),	
6	8 [cm]	Draw radii from the centers to the point of tangency and a line parallel	
		to the tangent through the center of the smaller circle. Connecting the	
		centers of the circles make a right triangle with sides, (13-7)=6, x and	
		hypotenuse 10. x=8.	
7	TAEHT	There are 12 permutations starting with A ($4!/2!$), same for E and H.	
		The 37 th one with be the first one beginning with T; TAEHT.	
8	1332101 _[6]	One can repeatedly divide by 6, with the dividend in base 7.	
		r_1	
		$(\sqrt{12})$	
		6)12r3	
		$6)111r^2$	
		6)1001r1	
		6)6010 <i>r</i> 0	
		6)51060 <i>r</i> 1	
		6)426511	
9	9	We have 3(62) + 7(2) = 200. Since 3 and 7 are relatively prime, the next	
		pair will be at 3(55) + 7(5). a = 62, 55, 48,, 6.	
10	$m_{3}^{\prime}-2n$	The average of the elements is the same as the 5 th element = m/9, so n -	
	or	m/9 = 2d, where d is the common difference. Solve for d and subtract	
	m - 6n	6d from n to get the 1 st element.	
	3	$n-\left(3n-\frac{m}{3}\right)=\frac{m}{3}-2n=\frac{m-6n}{3}$	

Math is Cool High School Championships - October 2009 9-10 Team Test Solutions

1	145	$h = 2(30) + \frac{5}{6}(30) = 85$
	[degrees]	$m = \frac{5}{2}(360) = 300$
		6° 360 + 85 - 300 = 145 deg
2	95	$h = 3i - 4$; $i = \frac{1}{(h - 29)}$; $h = 95$
	[hippos]	2 2 2
3	2520	We need f to be 1-1 meaning no two elements of A map to the same
		element in B. So there are 7 choices for the first element of A, 6 for
		the second, etc. 7x6x5x4x3=2520.
4	88	$ab = \frac{(a+b)^2 - a^2 - b^2}{2}$
5	25	$9^{\log_3 5} = 3^{2\log_3 5} = 3^{\log_3 25} = 25$
6	8 [cm]	Draw radii from the centers to the point of tangency and a line parallel
		to the tangent through the center of the smaller circle. Connecting the
		centers of the circles make a right triangle with sides, (13-7)=6, x and
		hypotenuse 10. x=8.
7	TAEHT	There are 12 permutations starting with A (4!/2!), same for E and H.
	1222101	The 37 ^m one with be the first one beginning with 1; TAEH1.
Ø	1332101[6]	One can repeatedly divide by 6, with the dividend in base 7.
		6)1r3 (-)12-2
		6)12r3 6)111r2
		6 <u>)1001</u> <i>r</i> 1
		$\begin{array}{c} 6 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\$
		6 <u>)426511</u>
9	250	Let a and b be the two diagonals and C be one of the angles. By the law
		of cosines used twice:
		$a^2 = 5^2 + 10^2 - 2(5)(10)\cos(\mathcal{C})$
		$b^2 = 5^2 + 10^2 - 2(5)(10)\cos(180 - C)$
		Cosines of C is the negative of the cosine of 180-C, so that adding the
		two equations gives: $a^2 + b^2 = 250$
10	$m_{3}^{\prime}-2n$	The average of the elements is the same as the 5^{th} element = m/9, so n -
	or	m/9 = 2d, where d is the common difference. Solve for d and subtract
	<u>m-6n</u>	6d from n to get the 1^{st} element.
	3	$n-\left(3n-\frac{m}{3}\right)=\frac{m}{3}-2n=\frac{m-6n}{3}$

Math is Cool High School Championships - October 2009 11-12 Team Test Solutions

Math is Cool High School Championships – October 2009 9-12 Pressure Round Test Solutions

1	19/5	$g(7) = g(f(2)) = \frac{2(8) + 2 + 1}{4 + 1} = \frac{19}{5}$
2	56	Using the difference between two squares: [91319^2-5^2]-[91319^2- 9^21=81-25=56
3	9	Just multiply the factors and look at the coefficients of x^2 and the constant term.
4	28	One can of course use algebra: $(6+x)/(20+x)=1/2$. Or we can notice we
	[games]	have lost 14 games and must win at least 8 more to be at 50% wins.
5	40/3	There are two equations for the distance between the houses:
	[min]	D=8T+8S; D=10T+5S. Multiply the first equation by 5 and the second by
		8 and subtract.
		3D=40T or D=(40/3)T.

Math is Cool High School Championships – October 2009 9-12 Mental Math Test Solutions

1.1	4/3	The slope of the line is -3/4, the negative reciprocal is 4/3.	
1.2	5	Solve in reverse (7 + 8) / 3 = 5.	
1.3	20	(10^10)^3 / (10^5)^2	
1.4	3/11	There are 11 ways that one can get at least one 6, and 3 of those have a sum of at least 11.	
21	Vec on True		
2.2	15	(106-8)/7 + 1 = 98/7 + 1 = 14+1=15.	
2.3	27	There are 2 outer edges on each face. Only the inner 3x3x3 are not painted. 27	
2.4	3	(7,23), (11,19), (13,17)	
3.1	44	The "plus 17" cancels and the 4 (6^2) - 4 (5^2) = 4 (6-5)(6+5)=44.	
3.2	35/37	Multiply num and den by 6 before combining. (36-1)/(36+1)=35/37.	
3.3	8	The hypotenuse is length 2root2	
3.4	.58	sqrt(1/3)=sqrt(3)/3 .= 1.732/3 .= .58.	
4.1	18	Rather than computing the side of the square, the area is $\frac{1}{2}$ the	
		product of the diagonals which are the same. $(1/2)(6)(6)=18$.	
4.2	$1\frac{3}{4}$ or	$\sqrt{3\frac{1}{16}} = \sqrt{\frac{49}{16}} = \frac{7}{4} = 1\frac{3}{4}$	
	One and		
	three		
	fourths		
4.3	63	(36/4) sets of 7. 9x7=63.	
4.4	1332	When the 6 numbers are written in a column, each of the three digits	
		will appear twice in each place. 2(1+2+3)=12. A little carrying and the	
		total is 1332.	

Math is Cool High School Championships - October 2009 9-12 College Bowl A Solutions

1	25.47	28.3 - 2.83 = 25.47			
2	Centroid	48=3+5x, x=9			
3	18 [cm ²]	4x9/2=18			
4	1/2	[2(2)-3]/2 = 1/2			
5	2 ³ *3*5				
	or				
	2 cubed				
	times 3				
	times 5				
6	3780	9 letters with 4 E's, 2 N's			
		and 2 S's.			
		9!/[4!2!2!]=3780			
7	8	[1+4+5+5+25]/5=			
		40/5=8			
8	29	X+22=57-6, x=29.			
1	17 and 1/2	$\frac{25}{6} \times \frac{\overline{21}}{5} = \frac{35}{2} = 17\frac{1}{2}$			
2	15	$\frac{96}{4} - 9 = 24 - 9 = 15$			

		6522
2	15	$\frac{96}{4} - 9 = 24 - 9 = 15$
3	15 pi [cm²]	$\frac{150}{360}\pi(6^2) = \frac{5}{12}(36)\pi = 15\pi$
4	2160	$\binom{6}{4}(-2)^4 3^2 = 2160$
5	12422 _[5]	Repeatedly divide by 5, remainders are the digits of the number.
6	7	Number the seats, 1,2,, 8. If 1,2 are painted, the third can 3,4,5,6,7. 123 is the same as 812. If 1,3 are painted the third can be 5 or 6. 7 possibilities.
7	27	$18\frac{1}{1-1/3} = 18\frac{3}{2} = 27$

0	00	45/45 2)/2 22
8	90	15(15-3)/2=90
	[diagonals]]
1	64 [%]	$\frac{100}{150}(96) = \frac{2}{3}(96) = 64$
2	2520	2^3 x 3^2 x 5 x 7 = 2520
		9x8x7x5 is also a multiple
		of 10.6.4.3.2 and 1.
3	4 + 4	Area of a equilateral
	root 3 [cm ²]	triangle is $\frac{s^2\sqrt{3}}{4}$. Total
		surface area is:
		$2(2) + 4\frac{2^2\sqrt{3}}{4} = 4 + 4\sqrt{3}$
4	[\$]	1.03×1.03×30,000 = 1.0609
	31,827	x 30,000 =
		31,827
5	12	$350 = 2 \cdot 5^2 \cdot 7;$ (2)(3)(2) = 12
6	144	4! ways of ordering the
		CD's. Treating them as a
		unit, there are 3! ways of
		ordering them and the
		DVDs. 4!×3! = 144.
7	130	3, 4, 6, 10, 18, 34, 66, 130.
8	16	1+i squared is 2i, 2i to the fourth is 16.

1	30240 [min]	(60)(24)(21)=30240
2	13	38/2 = 19 ostriches.
	[rattlesnakes]	32-19 = 13 snakes.
3	300pi [cm²]	Slant height is found
		using Pythagoras and
		is 13. Lateral surface
		area is
		(12)(13)pi=156pi.
		Base is 144pi.
		Total=300pi.
4	27	u=k/v, k=uv=18(144).
		v=k/u=(18)(144)/96 =
		27
5	240	gcd(30,48)=6.
		(30)(48)/6=(30)8 =
		240.
6	317	(418+356) - (528-71)
		= 317.
7	16	1000/37=27+.
		Subtract 2 for 37,74.
		Subtract 9 more for
		111, 222, etc. = 16.
8	1/3	There are 5C3 = 10
		ways of getting 3
		heads. Minus the all
		heads and all tails
		cases, there are 30
		possibilities. 10/30 =
		1/3.

Math is Cool High School Championships – October 2009 9-12 College Bowl B Solutions

2	106	Units digit must be 5 more than
		hundreds. 106 is first
		possibility.
3	42+6root29	Factor out the 6. Perimeter =
	[cm]	$6[2+5+\sqrt{29}] = 42+6\sqrt{29}$
4	-13	$f(3) = 3(3^2) - 5 \cdot 2^3 = 27 - 40 = -13$
5	900	9 choices for 1 st digit, 10 for
		the 2 nd and 3 rd . The 4 th must be
		the same as the 2^{nd} and the 5^{th}
		must be the 1^{st} . 9(10)(10) = 900
6	1/4	(4C3)/16=4/16=1/4
7	1050	5+10++100 = 5(1+2++20)
		$=5\frac{20(21)}{2}=5(210)=1050$
8	16	849+1 = 850 = 17(50), so the
		remainder is 16.

1	23	7+4+12 = 23
2	1800	6 (300) = 1800
	[km]	
3	16 [cm]	Two sides must add to more
		than the third. 9+16=25>24.
4	(2,-4)	Just pay attention to the x
		and y terms. (x-
		2)^2+(y+4)^2 = The
		center is (2,-4)
5	1207 _[8]	Add as usual, remember to
		carry at 8 (instead of 10).
		1207[8].

1	12+3 root3	$\frac{39(4+\sqrt{3})}{16-3} = 12 + 3\sqrt{3}$
---	------------	--

6	48	The total distance that the
	[feet]	ball travels is the total
		upward distance plus the
		total downward distance.
		Therefore:
		$U + D = \frac{24}{1 - \frac{1}{3}} + \frac{8}{1 - \frac{1}{3}}$
		= 36 + 12
		= 48
7	195	$72 = 2^3 \cdot 3^2$
		(1+2+4+8)(1+3+9) =
		(15)(13) = 195

8	2 root	Find area using Heron's
	6 [cm]	formula.
		s = (4+5+7)/2 = 8
		$A = \sqrt{8(1)(3)(4)} = 4\sqrt{6}$
		Area is also (1/2)bh=2h, so
		$h=2\sqrt{6}$