Math is Cool High School Championships - October 2010 9-12 Individual Test Solutions

1	56477	Just add
2	<u>4</u> 5	Cancel before you multiply to make it easier.
3	20	Sqrt((102)^2+(-11-5)^2) = 20, It is a multiple of a 3-4-5 triple.
4	17	PEMDAS order of operations
5	10/7	Combine x's on one side and constants on the other, then divide.
6	5/2	Change to slope-intercept form by putting y on the other side of the equation.
7	539 <i>π</i>	$V = \pi r^2 h$
8	-22, 16	Either x+3=19 or x+3 = -19.
9	13	Total is 91 divided by 7 numbers = 13.
10	$\frac{5x-9}{6}$ or $\frac{5x}{6} - \frac{3}{2}$	Common denominator is 6. $\frac{2x}{6} + \frac{3x-9}{6} = \frac{5x-9}{6}$
11	298	2(4x7 + 4x11 + 7x11) = 298
12	1560	40 ways of picking 1 st place and 39 ways for 2 nd place, order matters. 40(39) = 1560
13	[\$]42	One and one-fifth times 35.
14	(x-6)(x+3)	Need two numbers that multiply to -18 and add to -3: -6 and 3.
15	2/3	(7+3)/(7+3+5) = 2/3
16	<u>25</u> 6	The sum of the roots will be: -(-25)/6
17	105 512	$\frac{10\mathcal{C}6}{2^{10}} = \frac{210}{1024} = \frac{105}{512}$
18	6720 [ways]	8!/3! = 6720
19	2	All one has to do is substitute 1 for x to get a remainder of 2.
20	32°	The hour moves $\frac{1}{2}$ degree every minute and starts at 120 degrees. The minute hand moves 6 degrees every minute and starts at 0 degrees. 128-96 = 32 degrees.
21	22	$w = 28$ and $rac{2}{2} + w^{2} = 65$. Since $(rac{4}{2} + w)^{2} = rac{2}{2} + w^{2} + 2/w$ and $rac{4}{2} + w = 11$ the perimeter is 22.
22	21 [lines]	Between any two points, one can draw a line: 7C2 = 21.

23	0	Even after the first matrix multiply, one can see the matrix will be 0 at			
		(1,3).			
24	5	Consider the first round:			
	13	Matt wins, P(M)=1/6			
		Stacey wins: P(S)=(5/6)(1/3)=5/18.			
		Bertha wins: P(B)=(5/6)(2/3)(1/2)=5/18. So the chance that someone			
		wins is 13/18 and the portion of the time that Bertha wins is			
		(5/18)/(13/18)=5/13. One can also do the infinite geometric series.			
25	24 [cm]	The area of the annulus will be the area of the larger circle minus the			
		area of the smaller circle. One can draw the right triangle from the			
		center to the point of tangency to the end of the chord. One side is R,			
		another is r and the third which is half the length of the chord is R^2-			
		r^2 by Pythagoras.			
26	5√5 [cm]	Use the height of the cylinder as one side and unroll it 5 times to get the			
		other leg of a right triangle. The length of the line can be found using			
		Pythagoras to be			
		$\sqrt{10^2 + 5^2} = 5\sqrt{5}$			
27	343	If we expand out the expression and then set x=y=1, we get the sum of			
		the coefficients. So the sum is $(2+5)^3 = 343$			
28	60 [m]	Separate out the first 30 foot drop. The rest of the distance is twice			
		(up and down) the infinite series			
		$10 + \frac{1}{3}10 + \left(\frac{1}{3}\right)^2 10 + \left(\frac{1}{3}\right)^3 10 + \dots = 10\frac{1}{1 - \frac{1}{3}} = 15.$			
		Total is 30 + 2(15) = 60			
29	2	71=5040 one divisibility rule for 11 is that 5040 has the same remainder			
27	-	as $50+40=90$ and that is 2.			
30	8	From the 4 guys, you need to choose 3 and from 6 girls you need to			
	21	choose 3. There are 10 choose 6 ways overall to choose the committee.			
		4C3*6C3/10C6 = 8/21			
31	8 [pieces]	Probably can be guessed.			
		I ne right triangle drawn will be a 30-60-90 triangle with hypotenuse			
		equal to 4 and one leg 2. The height of the triangle is then $2\sqrt{3}$ which is			
		less than 3.5 which makes the total height less than 5.5.			

32	$2\sqrt{6} + 4$ [inches]	If the 4 centers are connected, the resulting shape is a regular				
		tetrahedron with side length $2\sqrt{6}$ The top vertex is directly above the				
		centro	id of t	he bas	se which is 2/3 of the length of the median (altitude).	
		A righ	t trian	gle is d	drawn from a vertex on the base to the centroid of the	
		base to	o the t	top ver	rtex. The height of the tetrahedron is then:	
		Γ.		($\sqrt{2}$	
		$h = \sqrt{\left(2\sqrt{6}\right)^2 - \left(2\sqrt{6}\frac{\sqrt{3}}{2}\frac{2}{3}\right)} = \sqrt{24 - 8} = 4$				
		Adding the top and bottom, we get $2\sqrt{6} + 4$				
33	6	Taking	the fi	irst fe	ew powers: 5, 25, 125, 625, 3125, we see even power	
		past 2	will be	e a 6.		
34	<i>x</i> + 2	When	dividin	ig by a	a quadratic polynomial, the remainder will be linear so	
					p(1) = 3 = A + B	
		p(x) co	in de n	ritten	n: $p(x) = (x^{-} - 1)q(x) + Ax + B$. Note p(-1) = 1 = -A + B	
		Solving	a for A	A and B	B gives a remainder of x+2.	
35	36 [ways]	Line up	the t	en boo	oks in a row leaving a space between each two books.	
	- , -	Of the	se 9 g	aps be	etween books, choose two. The books to the left of the	
		first g	ap qo '	to the	e first librarian, etc. So the number of ways of dividing	
		the te	n book	s is th	he same as the number of ways of choosing 2 gaps from	
		9. 902	9. 9C2 = 36.			
36	49 [One m	ust re	-order	r the points to make a convex shape.	
	$\frac{1}{2}$ [units]		5			
			₹			
		Г <u> </u>	-0-	-+		
		-5	¢		5	
			-5			
		The "s	hoelac	e" met	thod can be used to find the area.	
			-2	3		
		-3	-1	4	-8	
		8	2	2	-2	
		6	3	-3	-6	
		0	0	-4	-12	
		8	-2	2		
		-4 -2 3 -b				
		15 _24				
1					+C-	
		Aron -	Area = (1534)/2 = 49/2			

37	37	Use partial fractions to rewrite the sum as:
	180	$\sum_{x=1}^{\infty} \left(\frac{1}{x+3} - \frac{1}{x+6} \right) = \frac{1}{4} - \frac{1}{7} + \frac{1}{5} - \frac{1}{8} + \frac{1}{6} - \frac{1}{9} + \frac{1}{7} - \frac{1}{10} + \dots$
		$=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{180}$
38	57 [lockers]	It is a little easier to count the ones that are open. All the locker
		numbers with 1 prime factor will be open; primes or powers of primes. We
		get 2,4,8,16,32,64, 3,9,27,81, 5,25, 7,49 and the other 21 primes for a
		total of 35. The others will be multiples of the product of 3 primes,
		2*3*5=30,60,90; 2*3*7=42, 84 and 2*3*11=66, 2*3*13=78, 2*5*7=70,
		eight more for a total of 43 leaving 57 lockers still closed.
39	4	Let A be the first cup being bitter and B the second cup bitter.
	53	$p(A) = \frac{7}{8}, p(B \mid A) = \frac{7}{9}, p(B \mid A^{c}) = \frac{4}{9}$
		$p(BA) = \frac{7}{8}\frac{7}{9} = \frac{49}{72}, p(BA^{c}) = \frac{4}{9}\frac{1}{8} = \frac{4}{72}$
		$p(B) = \frac{49}{72} + \frac{4}{72} = \frac{53}{72}$
		$p(A^{c} \mid B) = \frac{4}{72} / \frac{53}{72} = \frac{4}{53}$
40	478	We know 81a + 9b is divisible by 9, then so is 395 - c which makes c = 8.
		Dividing by 9, we get 9a + b = 43 so 43-b must also be divisible by 9
		making b = 7. Solve for a=4 and the 3-digit number is 478.

1	В	2+15-2 = 15
2	D	3+5+12 + 9+21 = 50.
3	А	5(5-3)/2=5
4	A	$\frac{12^2\sqrt{3}}{4} = 36\sqrt{3}$
5	С	$1152 = 2^7 3^2$,
		8(3) = 24
6	С	3 5
		0 5
		3 2
		0 2
		2 0
		2 5
	<u> </u>	3 4
/	В	$\frac{1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=55}{11}$
8	A	$11^{11} = (10 + 1)^{11}$
		$= 10^{11} + + {\binom{11}{3}} 10^3 + {\binom{11}{2}} 10^2 + 11(10) + 1$
		= +5(1000) + 5500 + 110 + 1 =0611
9	D	6,5,1 - 6 ways
		6,4,2 - 6 ways
		6,3,3 – 3 ways
		5,5,2 - 3 ways
		5,4,3 - 6 ways
		4,4,4 - 1 way
	-	lotal of 25 ways over 6(6)(6)=216 possible rolls.
10		
	40√3	
		One can use trig or notice that a horizontal line drawn where the two arrows meet
		creates a 30-60-90 triangle, and then use Pythagoras on the lower triangle.

Math is Cool High School Championships - October 2010 9-10 Individual Multiple Choice Test Solutions

1	В	2+15-2 = 15
2	D	3+5+12 + 9+21 = 50.
3	Α	5(5-3)/2=5
4	В	Law of cosines:
		$c^2 = 4^2 + 5^2 - 2(4)(5)\cos(60^\circ) = 21$
5	С	$1152 = 2^7 3^2$,
		8(3) = 24
6	С	3 5
		0 5
		3 2
		0 2
		2 0
		2 5
		3 4
7	В	The empty seat can be anywhere, going clockwise place the 4 couples in any one of 4!
		ways. Then, each couple can be switch in 2 ways. 4!(2^4)=384
8	A	$11^{11} = (10 + 1)^{11}$
		$= 10^{11} + + {\binom{11}{3}} 10^3 + {\binom{11}{2}} 10^2 + 11(10) + 1$
		= +5(1000) + 5500 + 110 + 1 =0611
9	D	6,5,1 - 6 ways
		6,4,2 - 6 ways
		6,3,3 - 3 ways
		5,5,2 - 3 ways
		5,4,3 - 6 ways
		4,4,4 - 1 way
		Total of 25 ways over 6(6)(6)=216 possible rolls.
10	E	$\cos(\theta) = 3/5$, $\sin(\theta) = 4/5$ and
	49	$1 + \sin(2\alpha) = 1 + 2\sin(\alpha) + \cos(\alpha) = 1 + 34 + 49$
	25	$1 + \sin(2\theta) = 1 + 2\sin(\theta)\cos(\theta) = 1 + \frac{1}{5} = \frac{1}{5} = \frac{1}{25}$

Math is Cool High School Championships – October 2010 11-12 Individual Multiple Choice Test Solutions

Math is Cool High School Championships - October 2010 9-10 Team Test Solutions

1	30	6!/4!			
2	10	2, 3, and 5 are the prime factors, Sum=10.			
3	207[10]	$5*6^2 + 4*6 + 3 = 207$			
4	-289	17*(41+(41+33*-3))=17*(-17)=-289			
5	12	Three parallel lines, one perpendicular, and one at 40 degrees to the parallels.			
6	6	Medium: 3600=2^4*3^2*5^2 & 72=2^3*3^2, so there can be 3 or 4 2's,			
	(25)	exactly 2 3's, and 0, 1, or 2 5's, for an answer of 2*3.			
7	(2,5)	Complete the square			
		$4(x^2-4x+4)-2(y^2-10y+25)=a$			
		$4(x-2)^2 - 2(y-5)^2 = a$			
		Center is then (2,5).			
8	330	n is of the form a(a-1), giving 2, 6, 12, 20, 30, 42, 56, 72, and 90.			
		$\sqrt{n+\sqrt{n+\sqrt{n+\cdots}}}=k$			
		$\sqrt{n+k} = k$, use guadratic formula			
		$1 + \sqrt{1 + 4n} = 2m$ solve for n			
		n - m(m - 1)			
0	84	Tanore the shaded box. The total number of rectangles is 5(2 times 5(2 since			
9	04	there are 5 vertical and 5 horizontal lines and we choose 2 of each			
		(5C2)(5C2)=10(10)=100. Those including the shaded box must use the bottom			
		and right lines. There are 4 ways each of picking the top and left lines. 100 -			
		4(4) = 84.			
10	3 + 2 <i>a</i>	lac 72 log72 log(8*9)			
	2 + <i>a</i>	$\log_{12} / 2 = \frac{1}{\log_{12} \log_{12}} = \frac{1}{\log_{12} \log_{12} \log_$			
		3log2+2log3 3+2 <i>a</i>			
		$=\frac{1}{2\log 2 + \log 3} = \frac{1}{2 + a}$			

Math is Cool High School Championships - October 2010 11-12 Team Test Solutions

1	30	6!/4!			
2	-5/12	cos x = -sqrt(1 - (5/13)^2) =			
		-12/13 since 2 nd quad. Sin/cos =-5/12			
3	207 _[10]	$5 * 6^2 + 4 * 6 + 3 = 207$			
4	-289	17*(41+(41+33*-3))=17*(-17)=-289			
5	12	Three parallel lines, one perpendicular, and one at 40 degrees to the parallels.			
6	8	$17^{17} = (18 - 1)^{17} = 18^{17} - 17(18^{16}) + + 17(18) - 1$			
		All of the terms are divisible by 9 except the last; the -1 means the remainder			
		will be 8.			
7	(2,5)	Complete the square			
		$4(x^2-4x+4)-2(y^2-10y+25)=a$			
		$4(x-2)^2 - 2(y-5)^2 = a$			
		Center is then (2,5).			
8	330	n is of the form a(a-1), giving 2, 6, 12, 20, 30, 42, 56, 72, and 90.			
		$\sqrt{n} + \sqrt{n} + \sqrt{n} + \cdots = k$			
		$\sqrt{n+k} = k$, use quadratic formula			
		$1+\sqrt{1+4n}=2m$, solve for n			
		n=m(m-1)			
9	84	Ignore the shaded box. The total number of rectangles is 5C2 times 5C2 since			
		there are 5 vertical and 5 horizontal lines and we choose 2 of each.			
		(5C2)(5C2)=10(10)=100. Those including the shaded box must use the bottom			
		and right lines. There are 4 ways each of picking the top and left lines. 100 -			
10	2 3	4(4) = 04.			
10	$\frac{3u-u}{2}$	We know $(\sin x + \cos x) = \sin x + \cos x + 2\sin x \cos x = a$ so			
	_	$\sin x \cos x = \frac{a^2 - 1}{2} .$			
		$\sin^3 x + \cos^3 x = (\sin x + \cos x)(\sin^2 x + \cos^2 x - \sin x \cos x)$			
		(a^2-1) $3a-a^3$			
		$=a\left(1-\frac{a}{2}\right)=\frac{a}{2}$			
	1				

Math is Cool High School Championships - October 2010 9-10 Pressure Round Test Solutions

1	4	983, 974, 965, 875			
2	1	The first card can be anything. Of the 39 remaining cards of a different suit, 3			
	13	will make a pair.			
		3/39 = 1/13.			
3	87	The congruence statement means that 257 and j differ by a multiple of 34.			
		Take 257-5*34=87.			
4	10 [oz]	One could guess at the answer that calculating what I would have each morning			
		or set up an equation. If G is the amount of gold then:			
		$G = \frac{G}{2} + 5$ since I would have the same amount two days in a row. The solution is			
		10.			
5	6	$(3^{g}-9)(3^{g}-27)=0$			
		g is then 3 and 2.			

Math is Cool High School Championships - October 2010 11-12 Pressure Round Test Solutions

1	80640	The prime factors of 388080 are 2, 3, 5, 7 and 11. Half of the numbers less than			
		388080 are multiples of 2 and thus not relatively prime to 388080. The total			
		number of relatively prime is then:			
		$\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{5}\right)\left(1 - \frac{1}{7}\right)\left(1 - \frac{1}{11}\right)388080$			
		$= \left(\frac{1}{2}\right)\left(\frac{2}{3}\right)\left(\frac{4}{5}\right)\left(\frac{6}{7}\right)\left(\frac{10}{11}\right)388080$			
		$=\frac{16}{77}388080=80640$			
2	1	The first card can be anything. Of the 39 remaining cards of a different suit, 3			
	13	will make a pair.			
		3/39 = 1/13.			
3	87	The congruence statement means that 257 and j differ by a multiple of 34.			
	1/	1ake 257-5^34=87.			
4	$\frac{16}{2}$ [ft]	Solutions will be of the form: $t_n = a^n$			
	3 -	$t_0 = 4, t_1 = 6, 2t_{n+2} = t_n + t_{n+1}$ so			
		$2a^2 = 1 + a, a = 1, -\frac{1}{2}$			
		$t_n = \left(-\frac{4}{3}\right)\left(-\frac{1}{2}\right)^n + \frac{16}{3} \to \frac{16}{3}$			
5	6	$(3^{g}-9)(3^{g}-27)=0$			
		g is then 3 and 2.			

9/10	11/12	Answer	Solution
1.1	1.1	11	4x+13=57, 4x=44, x=11
1.2	1.2	15	P=2I+2w, 2(4)+2(7/2)
			=8+7=15
1.3	50	120	59 + 61 = 120
50	1.3	5/3	32=2^5=[8^(1/3)]^5 =8^(5/3)
1.4	1.4	9804	(100-14)(100+14) =100^2 - 14^2 = 10000-196
		Answer	
2.1	2.1	1/128	(1/2)^7 = 1/128
2.2	2.2	676	One way is to know 25^2=625, then 625+25+26=676
2.3	50	18	The diameter is then 6 which is the diagonal of the
			square. The area is (1/2)(6)(6) = 18.
50	2.3	-1/3	Adding 180 degrees, reflects the point about the
			origin. Thus the sine is -1/3
2.4	2.4	216	There are 9 numbers with average (40+8)/2=24.
			9(24)=216
		Answer	
3.1	3.1	Yes	2+3=5
3.2	3.2	12	The length can be found by Pythagorean Thrm. L=4,
			3(4)=12
3.3	50	63	The sum of the powers of two will be one less than the
			next power of two.
			2^n - 1 = (2-1)(2^(n-1)+2^(n-2)++2+1)
50	3.3	121	3^5 - 1 = (3-1)(3^4+3^3+3^2+3+1)
			(243-1)/2=121
3.4	3.4	144	There are four subjects and 4!=24 ways to arrange
			them. The math books can be arranged in 3!=6 ways
			within their group. 6(24) = 144
		Answer	
4.1	4.1	1/3	(4-2)/(10-4)=2/6=1/3
4.2	4.2	60	5!/2! = 120/2 = 60
4.3	50	$\sqrt{3}$	The altitude forms a 30-60-90 triangle with base 1 so
			the height is $\sqrt{3}$ and the area is (1/2)(2) $\sqrt{3}$ = $\sqrt{3}$.
50	4.3	1/2	4^(-1/2) = 1/(4^1/2) = 1/2
4.4	4.4	101, 103	Try them, most likely error is 89, 91 but 91=7*13.

Math is Cool High School Championships – October 2010 9-12 Mental Math Test Solutions