Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

Mental Math

9/11	Answer	Solution
1	30	There are 5 such even numbers and the formula is $n(n+1)=5(6)=30$.
2	3 [ways]	ННТ, НТН, ТНН.
3	6	1x60, 2x30, 3x20, 4x15, 5x12, 6x10.
4	9	$37 = 3x + 10, \ 27 = 3x, x = 9.$
5	18 [sq in]	Even though not the same size, all 4 triangles have the same area as the diagonals bisect each
		other. The same would be true if the shape were a general parallelogram.
6	65	The numbers from -10 to +10 cancel so all we need to do is add 11+12+13+14+15 = 50+15 = 65.
7	3	If the equation of the parabola is $4(y - k) = (x - h)^2$, the distance is p=3.
8	78 [ways]	There are 13 different values or ranks in a deck each with 4 cards. So, there are 13 ways to
		choose a rank and 4 choose 2 equals 6 ways to get a pair. 13(6) = 78.

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

Individual Test

9/11	Answer	Solution
1	11236	$(106^2) = (100+6)^2 = 10000 + 12(100) + 36 = 11236$
2	3	$\left\{4,\sqrt{4},\frac{1}{7}\right\}$
3	[x=] 7	4(x+5)-6=2(3x-1)+2;
		4x + 20 - 6 = 6x - 2 + 2; $14 = 2x$;
		x = 7
4	25 [%]	During the sale the price would be $p\left(\frac{4}{5}\right)$. If the increase is y, then $p\left(\frac{4}{5}\right)y=p$; $y=\frac{5}{4}$, so a
		25% percent increase.
5	2	$17 - 14 - ((5-3)^2 - 6) - \frac{9}{3} = 17 - 14 - (4-6) - 3 = 17 - 14 - (-2) - 3 = 3 + 2 - 3$
		= 2
6	3	$x^{2} - 1 = 3(x+1); \ x^{2} - 3x - 4 = (x-4)(x+1)$
		Solutions: $4 + (-1) = 3 \text{ or } -\frac{-3}{1} = 3.$
7	13	$2^{12} - 1 = (2^6 - 1)(2^6 + 1) = (2^3 - 1)(2^3 + 1)(2^2 + 1)(2^4 - 2^2 + 1) = 7(9)(5)(13)$
8	36 [sq cm]	The radius of the circle is $\sqrt{18} = 3\sqrt{2}$ making the diameter of the circle and diagonal of the
		square is $6\sqrt{2}$; the side length is then 6 making the area equal 36 sq cm.
9	48 [ways]	There are 3! = 6 ways to order the couples and 2 ways of ordering each couple. The total is:
		$6(2^3) = 48.$
10	21	463 / 28 = 16.54 so 17 classes needed to be run during each of the 6 periods. $17*6 = 102$
	[instructors]	and since each instructor teaches 5 classes means 21 instructors are needed.
11	52 [units]	The exterior tangents are each of length 20. The outer pieces of the circles make a whole
		circle of diameter 2(6)=12. The total length is then: $2(20) + 12\pi$. $40 + 12 = 52$.
12	49	The side of 7 must be a short leg. $7^2 = 49$ is the difference between two squares. Let n and
		n + k be the two numbers with a sum of $2n + k$.
		$49 = (n+k)^2 - n^2 = 2nk + k^2 = k(2n+k)$
		k can only be 1, 7 or 49 and can easily be seen to 1 so the sum is 49.
13	26 [cm]	To get the largest perimeter, choose sides as different as possible, 1 and 12. These gives a
		perimeter of 2(1+12)=26.

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

9/11	Answer	Solution
14	92	The last test will be count double. The six scores must total to $6(90) = 540$. These 4 scores
		add to 356 meaning the last score needs to be: $\frac{540-356}{2} = 92$.
15	20 [vertices]	There are a total of 12*5=60 vertices to the pentagons but a vertex of the dodecahedron is
1.6	20	where three faces meet. $60/3=20$.
16	20	Starting with 115, add multiples of 2(23)=46. 20(46)>900 so that is too much; 19 more multiples make 20 total.
17	6	The numbers from 10(1010 ₂) to 15 (1111 ₂) inclusive; a total of 6 numbers.
18	1	The equation will be: $3x - 2y = C$. Since it goes through $(2,4)$; $C = 3(2) - 2(4) = -2$. $3 + (-2) + (-2) = -1$, and $ -1 = 1$
19	3 [units]	$4\pi r^2 = \frac{4}{3}\pi r^3; \ 1 = \frac{1}{3}r; \ r = 3$
20	4	There are two ways to get \$15 and there are 4 choose $2 = 6$ possible pairs. The probability is then $1/3$ and multiply by $12 = 4$.
21	2	$\frac{(1+i)^2}{i} = \frac{1+2i+i^2}{i} = \frac{2i}{i} = 2$
22	0	If $a > c$, the $\frac{1}{a} < \frac{1}{c}$, the first is false.
		If $a = 1$, the second is also false
		If $a > b > c$ then $a^2 > bc$, $\frac{a}{c} > \frac{b}{a}$ and $-\frac{a}{c} < -\frac{b}{a}$ The interior angles are just 180 minus the external angles. $360/8 - 360/9 = 45 - 40 = 5$
23	5 [deg]	The interior angles are just 180 minus the external angles. $360/8 - 360/9 = 45 - 40 = 5$ degrees
24	12	For the parabola $ax^2 + bx + c$, the minimum will occur at $x = -\frac{b}{2a}$. So, $x = -2$, $(-2)^2 + $
		$4(-2) + 16 = 12$ or write the polynomial as $(x + 2)^2 + 12$
25	2	The graph of the equation is a hyperbola that is horizontally oriented. Therefore, it intersects the x-axis in 2 places: (3,0) and (-3,0).
26	6	The geometric mean of <i>n</i> numbers is:
		$\sqrt[n]{a_1 a_2 \dots a_n} = \sqrt[3]{3(9)(8)} = 3(2) = 6$

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

9/11	Answer	Solution
27	18	If there is one diagonal. $num = n + m - \gcd(m, n)$
28	2	$num = n + m - \gcd(m, n)$ The point will be the linear combination: $.4(2, 3) + .6(7, -7) = (.8 + 4.2, 1.2 - 4.2) = (5, -3)$. So $5 + (-3) = 2$
29	3 [points]	One needs to look for common slopes, let s_{mn} be the slope between the m^{th} and n^{th} points. $s_{12}=3, s_{13}=\frac{1}{3}, s_{14}=2, s_{15}=\frac{1}{3}, s_{14}=2, s_{15}=\frac{1}{3}, s_{15$
30	43	$(\sqrt{x} + \sqrt{y})^2 = x + 2\sqrt{xy} + y = 7^2 = 49$
31	5 [primes]	$x + y + 2\sqrt{9} = 49, \qquad x + y = 43$ $p = a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ Since p is prime a - b =1, a = b +1. $p = (b + 1)^2 + (b + 1)b + b^2 = 3b^2 + 3b + 1$ Try b=1, p=7; b=2, p=19, b=3, p=37, b=4, p=61, b=5, p=91X, b=6, p=127, b=7, p=169X. So a total of 5 primes.
32	148	$\begin{vmatrix} 1 & 3 & 6 \\ 8 & 0 & 4 \\ 0 & 5 & 3 \end{vmatrix} = 1[0(3) - 4(5)] - 8[3(3) - 5(6)] + 0[] = -20 + 168 = 148$
33	44	There are 12 such numbers each has the 4 digits appearing three times in the ones and tens column. The average in column is then $(1+3+4+8)/4 = 4$. Actually it doesn't matter if you permit repeated digits or not, the average is still 44.

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

9/11	Answer	Solution
34	18 [days]	A crew of x workers can do 1/3 of the work in one day while x+3 workers can do ½ of the
		work. Therefore 3 workers can do $\frac{1}{2}$ -1/3 =1/6 of the work in one day so 1 worker would
		1/18 of the job in one day. 18 days.
35	0	2 divides 10!+2, 3 divides 10!+3, etc. There are no prime numbers in the given range.
36	1	Use Descartes rule of signs. Since there are no sign changes in the coefficients, there are no
		positive real solutions. Substituting (-x) for x, yields $-3x^5 - x^3 + 5x^2 + 6 = 0$ which has 1
		sign change and there is 1 negative real solution.
37	84	This is equivalent to distributing the 6 "powers" between a, b, c and d where there is no
		guarantee that any variable gets any power. The solution is to add 4, line up the powers 1 2 3
		10; then choose 3 of the 9 gaps. 9 choose $3 = 9(8)(7)/6 = 84$.
38	4	$cos(2\theta) > cos(\theta) \rightarrow cos(2\theta) - cos(\theta) > 0.$
		$2\cos^2\theta - \cos(\theta) - 1 = (2\cos(\theta) + 1)(\cos(\theta) - 1) > 0$
		Need both positive or both negative; this happens on $\left(\frac{2\pi}{3}, \frac{4\pi}{3}\right)$ or $\frac{1}{3}$ of the total interval.
		$\frac{1}{3}(12) = 4.$
39	5	Let the altitude divide the side into lengths x and y . We have: $x + y = 16$ and using the
		Pythagorean formula equating the two expressions for the length of the altitude: $10^2 - x^2 =$
		$14^2 - y^2$. Substituting: $x = \frac{10^2 + 16^2 - 14^2}{2(16)} = \frac{160}{32} = 5$, clearly the shorter segment.
40	29	Solving the equation for <i>y</i> , one gets:
		$y = 12 + \frac{144}{x - 12}.$
		$144 = 2^43^2$ has $(4+1)(2+1) = 15$ positive factors so if we include the negative values, we
		get 30. However, we need to exclude -12 since x would be 0; leaving 29.

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

Individual Multiple Choice

muividuai Muitipie Choice				
9	11	Answer	Solution	
1	1	В		
			$3^{x} + 3^{x} + 3^{x} + 3^{x} + 3^{x} + 3^{x} = 6 * 3^{x} = 2 * 3^{1} * 3^{x} = 2 * 3^{x+1}$	
2	2	С	$169^{17} = 13^{34} = K$	
			$3^{68} = 9^{34} = L$	
			$11^{34} = J$	
			L J K is smallest to largest.	
3	3	D	The third side is 11.	
			. Н 61	
			$\sec \theta = \frac{H}{A} = \frac{61}{11}$	
4	50	В	$\binom{12}{4} = \frac{12!}{8! 4!} = 11 * 5 * 9 = 495$	
			$\binom{4}{4} = \frac{8!}{8!} = 11 * 5 * 9 = 495$	
5	5	D	Powers of 7 end in 7, 9, 3, 1, 7,	
			Powers of 8 end in 8, 4, 2, 6, 8,	
			7^{49} end in 7,8 102 ends in 4,	
			7*4=28, which ends in 8	
6	6	D		
			$x_{10} = 0.2\overline{4}_{12}; 12x_{10} = 2.\overline{4}_{12}$ $11x_{10} = 2.2_{12} = 2\frac{2}{12} = \frac{13}{6}.$	
			2 13	
			$11x_{10} = 2.2_{12} = 2_{12} = \frac{1}{6}$	
			13	
			$x = \frac{13}{66}$	
			66	
7	50	С	4, 1, 1 * 3	
'	30	C	1, 2, 3 * 6	
			2, 2, 2 * 1	
			10 total out of 216	
			10 total out of 210	

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

9	11	Answer	Solution
8	8	В	$4x^2 + 9y^2 - 16x + 18y = 11$
			$4(x^2 - 4x + 4) + 9(y^2 + 2y + 1) = 11 + 16 + 9 = 36$
			$\frac{(x-2)^2}{9} + \frac{(y+1)^2}{4} = 1$
			$\phantom{00000000000000000000000000000000000$
			$3*2*\pi=6\pi$
9	9	В	Add 5 pies to the total and make sure everyone gets one. There are 9 choose 4 ways to do
			this. Then take one back from each.
			$\binom{9}{4} = \frac{9(8)(7)(6)}{4(3)(2)} = 126$
10	50	D	Let $x = 1$, the right hand side is the sum that we want. The left hand side is
			$(7+3-6)^4 = 4^4 = 256$ $\sin^4 \theta - \cos^4 \theta =$
50	4	D	
			$(\sin^2\theta + \cos^2\theta)(\sin^2\theta - \cos^2\theta)$
			So, $\sin^2 \theta - \cos^2 \theta - 2\sin^2 \theta$
			$= -\cos^2\theta - \sin^2\theta = -1$
50	7	В	First consider lines that do not go through the center of the grid so that the line must be on
			one of the faces. Be careful not to double count a line.
			Top and Bottom faces: 8 lines each
			Left and Right: 6 lines (exclude top/bottom)
			Front and Back: 4 lines (exclude top, bottom and sides) Now, through the center there are 3 lines that go through the center of each face to the other
			side. Finally, there are 4 long diagonal lines going through the center.
			8+8+6+4+4+3+4= 43.
50	10	С	
	10	G	$S_n = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \cdots$ $2 * S_n = 1 + \frac{2}{2} + \frac{3}{4} + \frac{4}{8} + \cdots$
			2 3 4
			$2 * S_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$
			$S_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$
			$S_n = 2$

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

Team Test

9	11	Answer	Solution
1	1	8 [integers]	Brute force, or totient function multiplication properties:
			$\left(\frac{2-1}{2}\right)\left(\frac{3-1}{3}\right)\left(\frac{5-1}{5}\right)30 = 8$
			1, 7, 11, 13, 17, 19, 23, 29
2	-	20 [days]	The loss expectation each day (12 hours) is:
			$12\left(\frac{1}{2}\right)\frac{5+10}{2} = 45$
			So we expect 45 pounds of loss and 50 pounds of gain giving a gain of 5 pounds each day. 20
	2	4526	days.
3	3	4536	2016=2*2*2*2*3*3*7
			Sum of factors is then
			(1+2+4+8+16+32)(1+3+9)(1+7) = (63)(13)(8) = 6552.
			6552 - 2016 = 4536
4	4	7	The sum of the roots (-b/a) over the number of roots (3).
5	5	1	Solve the radical first:
			$x = \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}}$
			$x = \sqrt{2+x}, x = 2$
			Then the fraction stair substituting x=2:
			-1
			$\frac{-1}{y-2} = y. y = 1$
6	ı	30	An icosahedron has 3 edges per face, 20 faces, and two faces per edge (3*20/2=30)
7	7	1	ax+by+cz=4,2,3
			4a+2b+c=4 a-3b=5 -2a+b-c=-3
			2a+3b=1 a-3b=5
			a=2, b=-1, c=-2

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

9	11	Answer	Solution
8	8	3	The angle through the centers is 30 degrees (half of 60), thus: $\sin(30^\circ) = \frac{r}{r+x} = \frac{1}{2}, x = r.$ $\frac{R}{R+2r+x} = \frac{1}{2}, R = 3r, \frac{R}{r} = 3$
9	9	5	Factor out 13/3. $ \frac{13}{3} \left[1 + \frac{2}{3i} - \frac{4}{9} - \frac{8}{27i} + \cdots \right] = \frac{13}{3} \left[\frac{1}{1 - \frac{2}{3i}} \right] $ $ = \frac{13}{3} \left[\frac{3i}{3i - 2} \right] \left[\frac{3i + 2}{3i + 2} \right] = \frac{13}{3} \left[\frac{-9 + 6i}{-9 - 4} \right] $ $ = \frac{13}{3} \left(\frac{-9 + 6i}{-13} \right) = 3 - 2i $
10	-	32	Suppose Able eats i nuggets, then Bobo can at most eat 20 - i nuggets. Since they are independent, this has probability: $\frac{1}{21}\left(\frac{21-i}{21}\right)$. Summing these over all possibilities: $\sum_{i=0}^{20} \left(\frac{1}{21}\right) \left(\frac{21-i}{21}\right) = \frac{1}{21^2} \sum_{i=0}^{20} 21 - i$ $= \frac{1}{21^2} \left[21^2 - \frac{20(21)}{2}\right] = \frac{1}{21} (21-10) = \frac{11}{21}. \ 11 + 21 = 32$ You might also set up a grid of lattice points: $0 \le x \le 20$ and $0 \le y \le 20$ and count the number on or below the main diagonal $1 + 2 + 3 + \dots + 20 = \frac{20(21)}{2}$. Dividing by the total number of points 21^2 gives the same answer.

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

9	11	Answer	Solution
-	2	100	The first two coordinates are polar coordinates in the xy-plane and the last is the z-
			coordinate.
			$d^2 = (5^2) + (5\sqrt{3})^2 = 25 + 75 = 100$
-	6	36	Effectively asks the integral of the derivative over the range, divided by the length of the
			domain.
			$\frac{537 - 285}{7} = \frac{252}{7} = 36$
-	10	71	Let the origin be the base of the flagpost. Slope information at (0, c)
			y'(x) = -2x + b;
			$y'(0) = b = \tan\left(\frac{3\pi}{4}\right) = -1$
			$y(x) = -x^2 - x + c.$ $y(8) = 0$
			$0 = y(8) = -64 - 8 + c; \ c = 72$
			c + b = 72 - 1 = 71

Solutions	Math is Cool HS Championships 2016 - 2017	

Pressure Round

9	11	Answer	Solution
1	9	4010	The sum of the integers from 1 to n is $\frac{n(n+1)}{2}$. The elements in the nth set are then:
			- <u>-</u>
			$\frac{2^{n(n+1)}}{2}$
			$\frac{1}{2}n(n+1)-1,$
			$\frac{1}{2}n(n+1),$ $\frac{1}{2}n(n+1) - 1,,$ $\frac{1}{2}n(n+1) - (n-1)$
			$T_n = \frac{1}{2}n^2(n+1) - \frac{1}{2}n(n-1) = \frac{1}{2}n(n^2+1). \ T_{20} = \frac{1}{2}(20)(20^2+1) = 4010.$ $(r+s+t)^2 = r^2 + s^2 + t^2 + 2(rs+rt+st).$
2	2	-1	$(r+s+t)^2 = r^2 + s^2 + t^2 + 2(rs+rt+st).$
			From the polynomial.
			$r + c + t = -\frac{-3}{-3} - 3$
			1 - 3
			$r + s + t = -\frac{-3}{1} = 3$ $rs + rt + st = \frac{5}{1} = 5$
3	3	3	So, $3^2 = r^2 + s^2 + t^2 + 2(5)$, $9 - 10 = -1$. Use the fact that the remainder when a number is divided by 9 is determined by the sum of
		_	the digits of the numbers. Since any rearrangement of the digits will have the same
			remainder, subtracting them will always give a multiple of 9. Multiplying by a positive
			integer will be another multiple of nine whose digits must total to a multiple of 9. This means
			the remaining digit must be 3 since 8+1+2+9+9+4+3 is a multiple of 9.
4	9	4	The difference between the boys and the girls average is (89-77)=12 and the difference
			between class average of 81 and the girls is (89-81)=8 or 2/3 of that difference. So 1/3 of the
			class are girls. The answer is then 1+3=4.
5	5	162	Four steps in the sequence added 3, so 8 steps must add 6 making $a_{15} = 21$. The sum will
			then be $9\frac{(15+21)}{2} = 9(18) = 162$
9	1	30	Consider the 6 remainders calculated by dividing the 6 integers by 5. Since there are only 5
			possible remainders (0,1,2,3,4); at least two of the remainders must be equal, by the Pigeon
			Hole principle. Those numbers will then differ by a multiple of 5, $p=1$ and $30p=30$.

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

9	11	Answer	Solution
9	4	60 [degrees]	$(a+b+c)(a+b-c) = (a+b)^2 - c^2 = 3ab$
			Isolate c^2 .
			$c^2 = a^2 + b^2 - 2ab\left(\frac{1}{2}\right), so \cos C = \frac{1}{2}.$
			Therefore the measure of <i>C</i> is 60 degrees.

Solutions Math is Cool HS Championships 2016 - 2017	
---	--

9	11	Answer	Solution
1	1	32	$512 = 8^3, 4(8) = 32$
			Have to assume 512 is a perfect cube, since 512 ends in 2, the cube root must end in 8.
2	2	6 [factors]	1 2 4 17 34 68, or
			$68 = 2^2 \cdot 17^1$. $(2+1)(1+1) = 6$
3	50	24	$68 = 2^{2} \cdot 17^{1}. (2+1)(1+1) = 6$ $\sqrt{64} = 8, \sqrt{1000} = 31 + . So 8 to 31.$
			A total of 24 number
4	4	200 [people]	$(100+25)\left(\frac{8}{5}\right) = 125\left(\frac{8}{5}\right) = 200$ $136_7 + 244_7 = 413_7$
	F 0	412	(5) (5)
5	50	413 _[7] ,	
		four-one-three	Add normally but carry at 7. For example, 6 base 7 plus 4 base 7 is 3 base 7 and carry a 1., etc.
		[base 7]	
6	6 7	143	1 1 2 3 5 8 13 21 34 55, total is 143. Find the next two numbers, 89, 144; the total is 144-1.
7	/	1680 [ways]	8P4 = 8(7)(6)(5) = 1680
8	8	73	It's not combination since it matters who gets which hat. 2 3 5 7 11 += 28
0	O	/3	13 17 19 23 29 += 101
9	50	15	1+8+27+64+125=225. Or, use the formula for the sum of cubes:
	30	13	_
			$\left(\frac{n(n+1)}{2}\right)^2$
			\ 2 /
			So, the square root is just $n(n+1)/2$.
10	10	10 [polygons]	Triangles: 4, connect every 4 th vertex to make the triangle, move by 1 vertex to make another.
			Square: 3, Hexagon: 2, Dodecagon: 1.
F0	2	0' [1+2+3+4=10
50	3	8 pi [sq un]	Divide by 64. $\frac{x^2}{2} + \frac{y^2}{32} = 1$. $A = \sqrt{2(32)}\pi = 8\pi$
			An ellipse centered at the origin.
50	5	11014	1001 base 4 is 9 base 10; squared it is 81 and 81=64+16+1 = 1101 base 4. Or convert to base
		or one-one-	4,
		zero-one base	$(1001_2)^2 = (21_4)^2 = 1101_4$
		4.	

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

9	11	Answer	Solution
50	9	4 [points]	One needs $x^2 + y^2 = 36^2$. Of course, x=36, y=0 works. It turns out that there are no x>0, y>0 solutions to the equation above. There are then only 4 points, those on the axes that will work.

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

	•	Rouna Z	
9	11	Answer	Solution
1	1	50 [legs]	8 + 5*6 + 3*4 = 50
2	2	168	$89 = 2^1 \cdot 3^1 \cdot 13^1,$
			total = (1+2)(1+3)(1+13) = 168
3	50	9	8! = 8(7)(720) = 8(5040) = 40320.
			4 + 0 + 3 + 2 + 0 = 9
4	4	5 [factors]	$120 = 2^3(3^1)(5^1),$
			n = (3+1)(1+1)(1+1) = 16
			$16 = 2^4$ and has 5 factors.
5	50	20	1 2 3 4 5 6
		[palindromes]	7 8 9 11* 22* 33*
			44* 55* 66* 77* 88* 99*
			101 111 121* 131 141 151
			161 171 181 191 202 212
6	6	5040 [ways]	$\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{2 \cdot 2 \cdot 2} = 7! = 5040$
			2 · 2 · 2
7	7	14 [students]	$\frac{20(.75) + 100n}{20 + n} \ge 85$
			$1500 + 100n \ge 1700 + 85n$
0		405111	$15n \ge 200, \qquad n \ge 14$
8	8	13 [chickens]	Let c be chickens.
			2c + 4(18 - c) = 46
	5 0	40	72 - 46 = 2c, c = 13.
9	50	12	Can factor but easier to use Euler method. 516-372=144 so GCF must be a factor of 144 and
10	10	10 [:4-]	372-2(144)=84, 144-84=60, 84-60=24 and 60-2(24)=12.
10	10	19 [units]	Drop the altitude to the longer base by one of the upper vertices. $(21-5)/2 = 8$ and the height
			of the 30-60-90 triangle created is $8\sqrt{3}$. The diagonal of the trapezoid is the hypotenuse of a
			right triangle and $d^2 = (8\sqrt{3})^2 + (21 - 8)^2 = 192 + 169 = 361$. So d = 19 units.
50	2	1 [point]	The only time is in the first quadrant.

Solutions Math is Cool HS Championships 2016 - 2017	
---	--

9	11	Answer	Solution
50	5	$\frac{9\sqrt{2}}{4}$ nine root 2 over 4. [cu units]	In an equilateral triangle with side length 3, the median will be $\frac{3\sqrt{3}}{2}$, which will be $\frac{3\sqrt{3}}{2}\left(\frac{2}{3}\right) = \sqrt{3}$ from each vertex. Dropping an altitude from the top vertex of the tetrahedron, then to a vertex in the base is a right triangle having height. $h^2 = 3^2 - \sqrt{3}^2 = 6$. The volume is 1/3 times the height times the base area. $V = \left(\frac{1}{3}\right)\left(\sqrt{6}\right)\left(\frac{3^2\sqrt{3}}{4}\right) = \frac{9\sqrt{18}}{3(4)} = \frac{9\sqrt{2}}{4}$
50	9	line	$\sin \theta = \frac{5}{r}. \ r \sin \theta = 5; \ y = 5.$

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

		1 Roulla 5	
9	11	Answer	Solution
1	1	0	$4x^3 + 0x^2 - 3x + 9 = 0$
			Sum of roots is $-\frac{b}{a} = 0$.
2	2	6	Raising a number ending in 4 to powers just alternates between 4 and 6. Since 16 is even, the
			answer is 6.
3	50	35	Half the numbers are 15 above the mean, so the other half are 15 below the mean. 50-15=35.
4	4	288 [sq units]	The surface area of a sphere is $4\pi r^2 = 144\pi$, $r^2 = 36$, $r = 6$. The diameter is then 12. If s is
			the side length of the cube, then $\sqrt{s^2 + s^2 + s^2} = 12$, or $s^2 = \frac{144}{3} = 48$. $SA = 6s^2 = 6(48) = 6$
			288.
5	50	10302	$\frac{102!}{100!} = 102(101) = 10302$
6	6	41	Just change the sign of the imaginary portion to get the conjugate.
			$(5+4i)(5-4i) = 25-16i^2 = 41$
7	7	17 and 1/7	$\frac{5! 6!}{7!} = \frac{5!}{7} = \frac{120}{7} = 17 \frac{1}{7}$ $x^2 + y^2 = 58, (x + y)^2 = 16$
			$\frac{1}{7!} = \frac{1}{7} = \frac{1}{7} = \frac{1}{7}$
8	8	-21	
			$16 = x^2 + 2xy + y^2 = 58 + 2xy$
			2xy = 16 - 58 = -42,
			xy = -21
9	50	84	xy = -21 Clearly the digits have to be distinct and not include 0. Each choice of 3 digits can only make
			1 good number.
			$\binom{9}{3} = \frac{9 \cdot 8 \cdot 7}{3 \cdot 2} = 3(4)(7) = 84$
			ÿ U L
10	10	20/21	The right triangle will be 20-21-29 and the cotangent is 20/21.
50	3	0	The numerator remains 100 but the denominator grows without bounds. The limit is 0.
50	5	3/2	$\log_{16}\left(\frac{2}{3}\right) + \log_{16}(96) = \log_{16}\left(\frac{2}{3}, 96\right) = \log_{16}64 = \frac{3}{2}$
			Since $16^{\frac{3}{2}} = 16(\sqrt{16}) = 64$.
50	9	35 [cu units]	
			The volume of the parallelepiped is the "triple product" $u \cdot (v \times w) = \begin{bmatrix} 0 & 4 & 3 \\ 0 & 3 & 4 \\ 5 & 5 & 5 \end{bmatrix} = \begin{bmatrix} 0 & 4 & 3 \\ 0 & 3 & 4 \\ 0 & 5 & 5 \end{bmatrix}$
			10 0 01
			5[4(4) - 3(3)] = 35.

Solutions Math is Cool HS Championships 2016 - 2017	
---	--

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

9	11	Answer	Solution
1	1	84	Need 2 2's, a 3 and a 7.
			$2^2(3)(7) = 84.$
2	2	51	The mean of the positive integers is $(1+50)/2=25.5$ and the negative is -25.5 for a difference
			of 51.
4	4	30	$\frac{584}{999} = .584\overline{584}$
			The sum is $5 + 8 + 4 + 5 + 8 = 30$
3	50	10 [points]	If the radius of the circle is slightly smaller than the distance from the center to a vertex, the
			circle will intersect each side twice for 10 total.
5	50	-55	The average is: $-\frac{162}{3} = -54$ is the middle number and -55 is the smallest.
6	6	90 [ounces]	The average is: $-\frac{162}{3} = -54$ is the middle number and -55 is the smallest. The glass capacity is: $\frac{1}{8}c = 15$, $c = 15(8) = 120$.
			3 (122)
			$w = \frac{3}{4}(120) = 90.$
7	7	6/49	6 1 5 2 4 3 and reverse.
			6 ways, 49 total possibilities
8	8	[\$] 105	This means Bert spent $3/5$ of his money so, total is $(5/3)$ $324 = 540$. $540-435 = 105$.
9	50	14 [people]	It takes $4(7)=28$ people hours to paint the fence so we need $28/2 = 14$ people.
10	10	8	$\log_b 32 = \frac{5}{3}, \qquad b^{\frac{5}{3}} = 32,$
			$\log_b 32 - \frac{1}{3}$, $b^3 - 32$,
			$h = 22\overline{\xi} = 23 = 0$
50	3	13	$\frac{b = 325 = 2^{5} = 8}{\frac{7 + x}{9 + x}} = \frac{10}{11}. \ 77 + 11x = 90 + 10x, x = 13.$
			$\frac{1}{9+x} = \frac{1}{11}$. // + 11x = 90 + 10x, x = 13.
50	5	Square root of	These values are excluded: n= 1, 4, 9, 16, 25, 36, 49, 100 ten of them.
		110	

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

9	11	Answer	Solution
50	9	17 pi over 12	$\sin x \cos x = \frac{1}{4}$ $2 \sin x \cos x = \frac{1}{2} = \sin 2x$ $2x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}.$ $x = \frac{17\pi}{12}$

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

9	11	Answer	Solution
1	1	-38	4 + 5 - 10(5) + 3 = 12 - 50 = -38
2	2	5.5	50(55) 110 11
			$\frac{50(55)}{20(25)} = \frac{110}{20} = \frac{11}{2} = 5.5$
3	50	120 [ways]	It doesn't matter the first person sits, the other 5 can be arranged in 5! Ways. 120.
4	4	4	$\frac{1}{x} + \frac{1}{y} = \frac{x+y}{xy} = \frac{20}{5} = 4$
			$x^{\top}y^{-}xy^{-}5^{-4}$
5	50	32	There are 15 terms from the second to the 17 th .
			5 + 15(1.8) = 5 + 15 + 12 = 32
6	6	93	186 + x = .6(465) = 279
			x = 279 - 186 = 93 $f(x) = 18 - 4x = -10$
7	7	7	f(x) = 18 - 4x = -10
			$28 = 4x, \qquad x = 7.$
8	8	1 OR 1 to 1.	The volumes will be the same since $2(1/2)=1$.
9	50	2 [units]	A = Ax + By + C = 4(3) - 3(2) + 4 = 10 = 2
			$d = \frac{ Ax + By + C }{\sqrt{A^2 + B^2}} = \frac{4(3) - 3(2) + 4}{\sqrt{4^2 + (-3)^2}} = \frac{10}{5} = 2$ $\frac{x^2}{4} + \frac{y^2}{16} = 1 - \frac{z^2}{9}$
10	10	32 pi [cu	x^2 y^2 z^2
		units]	$\frac{1}{4} + \frac{5}{16} = 1 - \frac{1}{9}$
			This is an ellipsoid, an extension of a sphere, with volume:
			4 4 4 (2)(4)(2) 22
			$V = \frac{4}{3}\pi \ abc = \frac{4}{3}(2)(4)(3)\pi = 32\pi$ $y = 3x^2 + 18x - 30$
50	3	Negative 3	$y = 3x^2 + 18x - 30$
		comma	$=3(x+3)^2-57$
		negative 57	Minimum is $(-3, -57)$.
50	5	72 [minutes]	At 6am, A has already traveled half the distance so has 2 hours left. The ratio of speeds is 3:2
			so A will go 3/5 of the distance before they meet.
			$\left(\frac{3}{5}\right)2 = \frac{6}{5} hours = 72 min$
			\0/ 0
50	9	-1	You can use the double angle formula for cosine to get:
			$\log_2(\cos^2(30^\circ) - \sin^2(30^\circ)) = \log_2(\cos(60^\circ)) = \log_2\left(\frac{1}{2}\right) = -1$

Solutions	Math is Cool HS Championships 2016 - 2017	
Solutions	Matil is Cool its Championships 2010 - 2017	

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

9	11	Answer	Solution
1	1	13049	6574 + 6475 = 13049.
2	2	48 [sq units]	This is a trapezoid with height $4-1=3$ and bases $4(1)+6=10$ and $4(4)+6=22$.
			$A = \left(\frac{1}{2}\right)3(10+22) = 3(16) = 48$
3	50	80	2*5*8=80
4	4	2401	$7^4 = 49^2 = (50 - 1)^2 = 2500 - 100 + 1 = 2401$
5	50	Saturday	560 is a multiple of 7. We want 565 days in the future so 5 days past Monday is Saturday.
6	6	9 [sq units]	This is a trapezoid that has bases of 6 and 3 and a height of 2.
			$A = \left(\frac{1}{2}\right)2(6+3) = 9$
7	7	4320	The term will be:
			$\binom{6}{3}(2x)^3(3y)^3 = (20)(8)(27)x^3y^3 = 4320x^3y^3$
8	8	3x minus 2 times 2x plus 3 OR reversed	$6x^{2} + 5x - 6$ $= 6x^{2} + 9x - 4x - 6$ $= 3x(2x + 3) - 2(2x + 3)$ $= (3x - 2)(2x + 3)$
9	50	440 pi	Drawing a figure, one can see that it can reach 3/4 of a circle with radius 24 and 2(1/4) of a circle with radius 4. $A = \left(\frac{3}{4}\right)\pi(24^2) + \left(\frac{1}{2}\right)\pi(4^2) = 432\pi + 8\pi = 440\pi$
10	10	-2	$f(x) = x^3 - 6x^2 + 9x - 6 \text{ on } [0,3]$ $f'(x) = 3x^2 - 12x + 9 = 3(x^2 - 4x + 3)$ $= 3(x - 1)(x - 3)$ local max at x=1, min at x=3 $f(1) = 1 - 6 + 9 - 6 = -2$
50	3	241	It is a right triangle and the longest median will be to the shortest side. The median is the hypotenuse of a right triangle with legs 4 and 15. $h^2 = 4^2 + 15^2 = 241$

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

9	11	Answer	Solution
50	5	65 pi [sq un]	The slant height is found by Pythagoras: $\sqrt{5^2 + 12^2} = 13$. The lateral area is $5(13)\pi = 65\pi$.
50	9	Two comma	In standard form:
		negative 6.	$x^2 - 4x + 12y + 40 = 0$
			$(x-2)^2 = 4(-3)(y+3)$
			A parabola open downward with vertex at $(2, -3)$ and whose directrix 3 units up and focus
			three units down. $(2, -6)$.

Solutions	Math is Cool HS Championships 2016 - 2017	
-----------	---	--

College Bowl Extra Questions

9	11	Answer	Solution
1	1	122 [degrees]	The minute hand moves 6 degrees every minute so it is at 264 degrees. The hour hand starts
			at 120 degrees and moves 1/2 degree every minute so it is at 142 with a difference of 122
			degrees.
2	2	30 [numbers]	5 choices for the tens place (1, 4, 6, 8, 9) and 6 choices for the ones place (include 0).
3	3	40 [%]	$38 = 95x, x = \frac{38}{95} = \frac{2}{5} = 40\%$
			$38 - 93x, x - \frac{1}{95} - \frac{1}{5} - 40\%$
4	4	[\$] 5600	$3500 + \left(\frac{3}{5}\right)3500$
			$3300 + (\frac{5}{5})3300$
			= 3500 + 2100 = 5600
5	5	56250	Square 75 and add a 0. 75 squared is 7(8)=56 followed by 5(5)=25.
6	6	10800	3(60)(60) = 3(36)(100) = 10800
7	7	Twenty seven	The harmonic mean is the reciprocal of the average of the reciprocals so.
		over five.	$HM = \frac{2xy}{x+y} = \frac{2(3)(27)}{3+27} = \frac{27}{5}$
		27	$HM = \frac{1}{x + y} = \frac{1}{3 + 27} = \frac{1}{5}$
		5	, 5 1 21

Solutions Math is Cool HS Championships 2016 - 2017	
---	--