Use global search and replace to change the following variable

Year: #year \rightarrow 2019-20

Champs: #champs → Championships or Masters For the individual, delete 41-45 on answer sheet and problems.

<u>Mental Math Solutions</u>

	Answer	Solution
1	14	Cancel first: 7*2 = 14
2	6.3×10^4	
3	120 [degrees]	(6 - 2) * 180 / 6
4	360	6! / 2
5	1	The units digit is cyclic: 7, 9, 3, 1. 28 mod 4 = 1.
6	8	$2^8 = 256.$
7	24	16 / (1 - 1/3)
8	3, –5 [any order]	Factor and solver for x: $2x^2 + 4x - 30 = 0$ $2(x^2 + 2x - 15) = 0$ 2(x - 3)(x + 5) = 0

"Math is Cool" Masters -- 2019-20 High School <u>Individual Test Solutions</u>

	Answer	Solution
1	-5	
2	1631	
3	9π [sq. inches]	
4	19	
5	75 [degrees]	180 - 61 - 44 = 75
6	-1	Since $m < 0$, we only need to solve $6m - 3 = -9$.
7	17	$18^2 = 324, 17^2 = 289$
8	4 [games]	Five games costs $2 + 5 * 3 = 17$, too much. Four games costs $2 + 4 * 3 = 14$, so \$15 is enough.
9	1320	(13 - 1)(13 - 2)(13 - 3) = 1320
10	17 [paper clips]	
11	-2	
12	2112	
13	675	
14	$\frac{5}{18}$	
15	$\frac{1}{2}$	

16	$60\sqrt{14}$		
17	(2,1)		
18	18	18 comes up twice.	
19	12π [cubic meters]		
20	1155	Arithmetic series has $\frac{75-35}{2} + 1 = 21$ terms, so	
		$\left(\frac{21}{2}\right)(75+35) = 1155.$	
21	9	There are five numbers, so $\sqrt[5]{1 \times 3 \times 9 \times 27 \times 81} = 9$.	
22	3120[4]	Convert to base 10 first, then use repeated division to convert to base 4.	
23	8	Cross multiply and solve the resulting equation: 3(x - 3) = x + 7.	
24	90 [points]	12(80) = 8(75) + 4(x) or realize that 8 students is twice 4 students, so the 4 students must average twice as far from 80% as the first 8. x must be 90%.	
25	20 [units]	Solve $5 + (x - 5) + (x - 4) = 10 + (x - 10) + 16$.	
26	3	Factor out the 3 ^x in the numerator to make solving easier: $\frac{3^{x}}{39}(3+9+27) = 27$	
27	$14\sqrt{2}$ [units]	Get the points of intersection by solving the system of equations. Substitute into the circle equation and solve $x^2 + (x + 2)^2 = 100$. Then use the distance formula.	
28	51	We have $f(-1) = -7$ and $g(-7) = 51$.	
29	56	There are C(8,5) = 56 ways to place the consonants; there is only one alphabetical ordering for them. Place vowels in remaining spots, also only one ordering.	
30	36 [meters]	The altitude creates two 5-12-13 right triangles.	

21	66	"Stars-in-bars" problem, with $w + l + t = 10$.		
JI	[outcomes]			
32	15	$\begin{bmatrix} 5 & -13/3 & 23/3 \end{bmatrix}$		
52		Inverse is $\begin{vmatrix} 1 & -2/3 & 4/3 \end{vmatrix}$		
33	9	Solve $x = \sqrt[3]{24} + x$ by guess-and-check. We find that		
		$x = 3$, so answer is $3 \times 3 = 9$.		
34	998	Experiment with values of <i>n</i> just below 1000 to		
		discover that for $n < 1000$, $f(n) = 997$ if n is even		
		and $f(n) = 998$ if <i>n</i> is odd.		
35	354	Rewrite equation as $(2^{y} - x)(2^{y} + x) = 615$. Guess-		
		and-check by setting factors of 615 equal to factors of		
	11	LHS of equation. $x = 59$ and $y = 6$.		
$ 36 ^{14}$ integers from 1 to 19 add up to 1		Integers from 1 to 19 and up to 190. Go through values 7^k		
		of $\frac{1}{15k}$, add up the numerator and denominator, and get		
		to within 190.		
Alternatively, if Jack's sum is <i>n</i> is the one neither picked, t		Alternatively, if Jack's sum is $7x$, Jill's sum is $15x$, and		
		<i>n</i> is the one neither picked, then $7x + 15x + n = 1 + 10$		
		$2 + \dots + 19 = 190$. Solve Diophantine Equation, for $m < 10$		
~	175	$n \ge 13$.		
37	$\frac{175}{2\Gamma}$	Say we have two randomly made pizzas. For any one $\frac{3}{100000000000000000000000000000000000$		
	256	topping, there is a – probability it is not common to		
		both pizzas. Since there are four toppings per pizza,		
		the probability of no toppings in common is $\left(\frac{3}{4}\right)^4$, so		
		answer is $1 - \left(\frac{3}{4}\right)^4 = \frac{175}{256}$.		

38	29	By drawing the picture, we see that the internal
	3	tangents have a slope of 3 and 4. Let a equal the slope
		of the line through the centers of the two circles. By
		symmetric, we have the relationships
		$\arctan a - \arctan 3 = \arctan 4 - \arctan a$
		and
		$\arctan a - \arctan 2 = \arctan m - \arctan a$.
		Use sum-and-difference formulae for tangent and reduce the equations to
		$\frac{a-3}{1+3a} = \frac{4-a}{1+4a}$
		and
		$\frac{a-2}{1+2a} = \frac{m-a}{1+ma}$
		Solve the system for <i>m</i> .
30	192π [sq.	Radius of circle is $\sqrt{(c-13)^2 + (c-7)^2}$, which
57	units]	cleverly works out to be $\sqrt{2(c^2 - 20c + 13) + 192} = \sqrt{2(0) + 192}$.
40	2058	The numerator of question factors to $(a + b + c)^2$.
41	84 [units]	Break up quadrilateral into two right triangles, apply Pythagorean Theorem twice.
42	32400	Number needs to be of the form $2^a 3^b 5^c$, where $(a + 1)(b + 1)(c + 1) = 75$. Guess-and-check to find that $(a, b, c) = (4,4,2)$.
12	25	Choose the digit of the three-of-a-kind; choose
43	162	distinct, different kind digits for the other results;
		then order the results: $C(6,1) * C(5,2) * \left(\frac{5!}{2!}\right) = 1200$
		is the numerator, 6^5 is the denominator.

44	72	Notice that the expression is equivalent to $(12 - 1)^{2019} + (12 + 1)^{2019}$, and when expanding via the Binomial Theorem, we get something of the form 2(STUFF + 2019 * 12), where "STUFF" has factors of 12^2 and above. Thus, that part of the expression has remainder of 0 upon division by 144. The remaining portion, $2 * 2019 * 12$ has remainder of 72 when divided by 144.	
45	50 [units]	Without loss of generality, let quadrilateral be <i>ABCD</i> , and let AB, BC, and CD be the congruent sides. Refer to diagram below: Since the angles hit the same arc \widehat{CD} , $m \angle BAP = m \angle COD$. Use the Law of Cosines on triangle COD to obtain $\cos \angle COD = \frac{3}{4}$. Use SOH-CAH-TOA on triangle ABP to obtain $AP = AB \cos \angle BAP = 20 \left(\frac{3}{4}\right) = 15$. By symmetry, $AD = 15 + 20 + 15 = 50$.	

Multiple Choice Solutions

9/	11/	Answer	Solution
10th	12th		
1	1	С	Solve to get $x = k = 6$. Substitute this value into $3k^2/4$.
2		E	Simplify fraction from the lowest level, carefully working your way up.
3	3	D	We have $\frac{\Delta y}{\Delta x} = \frac{15-6}{3-k} = 3$. Solve the equation.
4	4	В	A heptagon has $n = 7$ sides. The formula for sum of all interior angles is $180(n - 2)$.
5	5	В	In an arithmetic sequence, any term is the average of its neighbors. Thus, we need to solve $2(2x + 11) = (x) + (4x - 3)$. Solve to get $x = 25$, obtain two adjacent terms, and subtract to find the common difference.
6		C	Look at units digits first and you can get 10 for each block of 100. That gives you 40 4s. If you look at tens digits you get an additional 5 for each block of 100. That gives you 60 total, plus 1 for 400 yields a grand total of 61 appearances.
7	7	E	Draw a picture, break up the trapezoid into two triangles, and apply the Triangle Inequality to the sides. The possible integer values of the other leg are 2, 3, 4, 14, or 13 possible values.
8	8	B	First, we write <i>b</i> as $b = \sqrt[20]{2}$. Raising <i>b</i> , <i>c</i> , and <i>d</i> to the 300 th power yields 2^{15} , 5^6 , and 6^5 . So among those three numbers the largest is <i>b</i> . To compare <i>a</i> and <i>b</i> , we raise them both to the 140 th power to obtain 3^4 and 2^7 . Therefore, <i>b</i> is larger, making it the largest overall.

Q		Δ	The number of multiples of 2, 3, and 5 are
		Γ	$\left \frac{1000}{LCM(2,3,5)} \right = 33$. The number of multiples of 2,
			3, 5, and 8 are $\left \frac{1000}{LCM(2,3,5,8)}\right = 8$. The positive
			difference of these two numbers is the desired
			count.
10	10	D	$a+b^*c=20 \rightarrow a=20-b^*c$
10			$c^{*}d$ -a=19 $\rightarrow c^{*}d$ – 20+b*c
			$c^{*}(d-b)=39 = 3^{*}13 = 1^{*}39$
	2	B	Same as finding the units digit of 8^8. Go
		D	through units digits of powers of 8 and find a
			pattern.
	6	C	Use the change-of-base formula and log rules
	U		to convert the equation into
			$\log_6 \sqrt{(x-7)(x-2)} = 1$, or $(x-7)(x-2) =$
			36. Solve this quadratic, keeping in mind that
			x > 7.
	0	Δ	If $LCM(x, y) = 72$, then either 8 divides x, 9
	9	A	divides <i>x</i> , or both. However, since
			LCM(x, z) = 600 and 9 does not divide 600,
			we know that 9 does not divide <i>x</i> . Thus, <i>x</i> is
			either 8 or 24. By similar reasoning, we find
			that y can be 9, 18, or 36. Neither x nor y have
			a power of 5; therefore <i>z</i> must be the source
			of all powers of 5. The possible values of <i>z</i> are
			25, 50, 75, 100, 150, 300. Experiment with
			various powers of 2 and 3 to get valid values
			for z.

Team Test Solutions

9/	11/	Answer	Solution
10th	12th		
1	1	122	Convert to base 10, add, and then write in base 9.
2		80 [mph]	240/60 = 4 hours. David must cover that distance in 3 hours. Thus, answer is 240/3 = 80 mph.
3	3	30 [sq. units]	Use the Shoelace Method, or draw a picture.
4	4	1	Factor $(2^{x} - 2)(2^{x} - 6) = 0$. The sub- equation $2^{x} - 2 = 0$ yields the smallest solution.
5	5	-1594	Use your favorite method to evaluate determinant.
6		248	Let the number in base 7 equal <i>abc</i> , so that in base 9, the number is <i>cba</i> . These are both the same number, just different bases, so convert to a common base 10. This yields the equations 49a + 7b + c = 81c + 9b + a, or $48a =80c + 2b$. Guess and check—factoring in the constraints on the values of the digits— we have $a = 5, b = 0$, and $c = 3$. We want the number in base 10, and $503c = 248cc$

7	7	480 [meters]	Let x be the distance Jacob runs before the
			first meeting. Since the two start at
			diametrically opposite points, note that $x +$
			100 is half the circumference of the track.
			By the second meeting, Jacob has run a total
			of $100 + (x + 100) - 60 = x + 140$. Jillian
			has run a total of $x + 60$. We have the
			proportion $\frac{x}{100} = \frac{x+140}{x+60}$, with solution $x =$
			140, so the circumference of the track is
			2(140 + 100) = 480.
8	8	25	
U	0	72	
0		180,001	Sum of 1 through 9 is 45. Each digit
9			appears 4 times in each position. From 1
			through 9,999 we have:
			45 * 4 * 10000 = 180,000.
10	10	187,902	Principle of Inclusion-Exclusion
	2	$2\sqrt{2}\frac{3\pi}{3\pi}i$	In the complex plane, the magnitude is
	Z	$2\sqrt{2}e^{4}$	$\sqrt{a^2 + b^2}$ for $a + bi$. The angle is 135° or
			$3\pi/\Lambda$
		2	Voor taling reginne cals of both sides of the
	6		Reep taking reciprocals of both sides of the
			equation rather than simplifying the
			complex fraction.

0	120	Let $M = 2020$ and $N = 800$.
9		We have $(a^2 + b^2)(c^2 + d^2) = M^2$. Since $ac = bd$, this implies that $(ac)^2 + (bd)^2 = 2abcd$. Use this along with the previous equation to determine that ad + bc = M.
		Notice that $(a^2 + b^2) + (c^2 + d^2) - 2(ad + bc) = M + M - 2M = 0$. But this factors to $(a - d)^2 + (b - c)^2 = 0$, which means that a = d and $b = c$.
		Consequently, $a + b = c + d$. Therefore, $(a + b)(c + d) = ac + bd + ad + bc = N + d + M = 2N + M$, or $a + b = c + d = \sqrt{2N + M}$.
		Finally, we have $2\sqrt{2N+M}$
		$\begin{vmatrix} a+b+c+a &= 2\sqrt{2N} + M \\ &= 2\sqrt{1600 + 2020} = 2\sqrt{3620} \\ &\approx 2(60) = 120. \end{vmatrix}$

Pressure Solutions

9/	11/	Answer	Solution
10th	12th		
1	1	64π	Rearrange to the standard form and calculate the area as: πab . Standard form is: $\frac{(x-h)^2}{a^2} + \frac{(x-k)^2}{b^2} = \frac{(x-8)^2}{128} + \frac{(y+4)^2}{32}$ $= 1$ $A = \pi\sqrt{32 * 128} = 64\pi$
2		4:25 PM	Volume of the cone is $\frac{\pi}{3} * h * r^2$. 80% of the volume is $0.8^*(30 \pi) = 24\pi$ and 37.5% of the volume is 11.25π . Take the difference and divide by 1.5π to calculate how long it takes Balderdash to drink all that water. Then add the hours to 7:55 AM.
3	3	1800 – 18000 <i>i</i>	$(5-5i)^{3}(6+6i)^{2}$ = 5 ³ 6 ² [(1-i)(1+i)] ² (1-i) = 125(36)(4)(1-i) = 18000 - 18000i
4	4	25,401,600	
5		$\frac{5}{2}$	Plotting the graphs, you get one right triangle that is 2x2 and another that is 1x1. Total area is 5/2.
	2	$\left \frac{1}{8}\right $	Move the ¼ exponent out and take the derivative, using the chain rule.
	5	73	Formula for 3x3 matrix. Determinants are 81 and -8.

College Bowl Round #1 Solutions

	Answer	Solution		
1	$8\sqrt{15}$ [units]	The length of the leg is $\sqrt{34^2 - 14^2} = \sqrt{960}$.		
2	22/51 [twenty- two over fifty-one]	(41 3) / (123 - 21)		
3	4/13 [Four- thirteenths]	(4 + 12) / 52		
4	864	330=2*3*5*1, Sum of factors = (1+2)(1+3)(1+5)(1+11)=3*4*6*12=864		
5	6	To find the rational root, plug in values until you get a solution. That is 2. Divide out $(x - 2)$ to get the remaining 2 nd degree polynomial of $x^2 - 4x + 2$. Use the quadratic equation to find the remaining two roots of $2 \pm \sqrt{2}$. Shortcut: - b / a = - (- 6) / 1		
6	50 [squares]	3+8+15+24		
7	3	Expand and combine like terms.		
8	2 [pieces]	600 - 300 - 150 = 150. 150 / 4 = 37.5 so he gives away 4*37. 150 - 4*37 = 2.		
9	468,000 [license plates]	26*25*10*9*8		
10	13	Set up system of equations to find that there are 14 cats and 27 birds. Then take the difference.		

College Bowl Round #2 Solutions

	Answer	Solution			
1	499,500	This is just $\frac{n(n+1)}{2}$.			
2	(-11, 7)	Work into vertex form by completing the square.			
3	150 [minutes]	Find the rates of weeds pulled per hour for each. Then divide 175 by the combined rate.			
4	(-1/3, 6) Negative one-third [comma] six	Find the equation for the line that goes through $(1, 7)$ and $(5, 10)$. Then use whatever method to find where it intersects with the line $6x + 2y = 10$.			
5	8	Convert to the standard ellipse form by completing the square for the x and y parts of the equation.			
6	128 [square inches]	A sphere with surface area 64π has a radius of 4, so the space diagonal of the cube is 8 and the side length is $8/\sqrt{3}$. Square it and multiply by 6 to get the surface area of the cube.			
7	4095 4096	1 - Pr(all bulbs light up) = $1 - \binom{12}{12} (\frac{1}{2})^{12} (\frac{1}{2})^{0}$			
8	$\frac{1}{12}$	The possibilities are $\{5, 5\}$, $\{4, 6\}$, and $\{6, 4\}$. There are $(1/6)^2$ combinations. So the probability is $3/36$.			
9	160 [degrees]	The formula is 180 * (S – 2) / S.			
10	5	Basic log rules.			

College Bowl Round #3 Solutions

	Answer	Solution		
1	15 [centimeters]	If you draw it out, it is obvious that the Pythagorean theorem can be used to find the length of the segment.		
2	8/11	$Pr(A B) = \frac{Pr(A \cap B)}{Pr(B)}$ where A is the event that a red card is drawn and B is the event that a face card or heart is drawn. The denominator is 22/52 and the numerator is 16/52.		
3	-3/2	$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}, \csc\left(\frac{\pi}{6}\right) = 2$		
4	2	Volume of a sphere = $\frac{4}{3}\pi r^3$ Surface area of a sphere = $4\pi r^2$		
5	-576	$\binom{6}{1}(3)(-2)^5$		
6	3,780 [ways]	There are $\frac{8!}{2!2!2!}$ ways to rearrange the letters in CALCULUS in any order. There are $\frac{7!}{2!2!}$ ways to rearrange the letters in CALCULUS so that the Us are next to each other. The difference is the answer.		
7	32 [factors]	$1080 = 2^3 * 3^3 * 5^1$ (1+3)*(1+3)*(1+1) = 32		
8	-3/2	Slope = $\frac{5-11}{-3-6}$ Invert it to get the slope of the perpendicular line.		
9	20			
10	165π [units squared]	$(13^2 - 2^2)\pi$		

College Bowl Round #4 Solutions

	Answer	Solution
1	-3	Plug in 1 to get one solution. Divide it out and then use the quadratic formula.
2	40,320	
3	1/221	(4/52)*(3/51)
4	$54\sqrt{3}$ [units squared]	The length of a side of the hexagon is the same as the circle's radius.
5	100	Even digits are 0, 2, 4, 6, 8. There are 5 choices for each place in the 3-digit number, except that 0 can't be in the hundred's spot. 4*5*5=100.
6	8	Harmonic mean is the inverse of the average of the inverses.
7	22	The 1 st is 6 and the 2 nd is 28. 1 + 2 + 3 = 6 and 1 + 2 + 4 + 7 + 14 = 28
8	156 [units]	Use the triangle inequality theorem to figure out the largest and smallest possible lengths.
9	6,552	Factor each number completely (until primes). Then multiply each factor the greatest number of times it occurs in either number.
10	-7	PEMDAS

College Bowl Round #5 Solutions

	Answer	Solution		
1	1071	Difference of squares		
2	81			
3	1/2	-b/2a=x, then plug in x into your parabola to find the value of y.		
4	9 [raised] to the 48 th [power]	Make the bases common.		
5	150 [hotdogs]	System of equations 2n+1.5h=525 and n+h=300. Solve the second equation for n, then substitute into the first equation.		
6	-1	Unit circle		
7	2/11	There are 11 different combinations that can be made where at least one die is a 3. Out of those 11, {3, 4} and {4, 3} sum up to 7.		
8	720 radical 3 or 720 square root 3 [units cubed]	To find the area of a hexagon it is 1/2Pa then multiply by the height to get volume.		
9	1 [solution]	You could either find the discriminant of the equation or factor out and solve for x.		
10	32 [units squared]	The diagonal of the square is 8, and you will get a 45-45- 90 triangle. The side of the square= 4 radical 2, then square that answer and you should get 16 radical 4, which give you 32		

College Bowl Round #6 Solutions

	Answer	Solution			
1	$\sqrt{93}$ [inches]	$5^2 + 8^2 + 2^2 = 93$			
2	7	$\ln(x^2 - 36) - \ln(x + 6) = \ln(x - 6)$			
3	-1	$i^{10} + i^{17} + i^{-29} = i^2 + i + i^{-1} = -1 + i - i = -1.$			
4	0, 1 and 6	Test a for $\frac{\#}{1}$	ew cubes (#)^3	S Remainder 1	
		23	8 27	1 6 1	
		4 5 6	64 125 216	1 6 6	
		7 8 9	343 512 729	0 1 1	
5	639	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
6	12 [males]	3M=2F and F=2(M-3).			
7	12	You can add the squares until 650, or use the equation for the sum of the first <i>n</i> numbers: $\frac{n(n+1)(2n+1)}{6} = 650$			
8	25 [sq inches]	One diagonal measures $5\sqrt{2}$ inches.			
9	1080 [diagonals]	d = n (n	- 3) / 2.	48 * 45 / 2 = 1080.	

[x =] 3

"Math is Cool" Masters -- 2019-20 High School

<u>College Bowl Round (Extra) Solutions</u>

	Answer	Solution
1	2	$log_{2019}4076351 = x$ 2019 squared is 4076351
2	14641	Students could quickly use Pascal's triangle to solve
3	41/333	Any repeating decimal could be placed on the numerator and the same amount of digits in the denominator as 9s so 123/999 and reduce
4	2√2 [meters]	Call the radius of the smaller circle r_1 and the radius of the larger circle r_2 . The area between the circles is $\pi(r_2^2 - r_1^2)$. So $r_2^2 - r_1^2 = 2$. Use the Pythagorean theorem to calculate half of the length of the chord – this is just $\sqrt{2}$. Double it to get the answer.
5	49.95	Solve by adding 1.11 + 2.22 + 3.33 + + 9.99. Or factor and solve: 1.11 * (1 + 2 + 3 + + 9) = 1.11 * 45
6	7920	11! / 7! = 11 * 10 * 9 * 8