"Math is Cool" Masters -- 2020-21

6th Grade

Mental Math Solutions

6th	Answer	Solution
1	756	What is the positive difference between one thousand and six and two hundred and fifty?
	6	1006 - 250 = 756 What is the areatest common factor of eighteen and twenty-
2		four? 18 = 6*2, 24 = 6*4, co.6 is the CCE
2	2100	What is the product of the numbers five six seven and ten?
3		5*6*7*10 = 2100
4	[A + B =] 5	As a reduced common fraction, the probability of flipping no heads when you flip a fair coin twice is A over B. What is the value of A plus B?
	[x -] 12	P(1,1) = 1/2 + 1/2 = 1/4, so $1 + 4 = 5$
5	[x -] 12	eight.
		2x + 4 = 28, 2x = 24, x = 12
6	7 [letters]	Sunday is one day after Saturday. How many letters are in the name of the day that is seventeen days after Saturday?
		Since 14 is a multiple of 7, 14 days from now will be Saturday, 15-Sun, 16-Mon, 17-Tue and Tuesday has 7 letters
7	[A + B =] 7	As a reduced common fraction, the slope of a line with points eight comma three and twelve comma six is A over B. What is the value of $A + B$?
		(8, 3) and (12, 6) Slope = (6 – 3)/(12 – 8) = 3/4, and 3 + 4 = 7

8	[A + B =] 45	As a decimal to the nearest hundredth, the number of square inches in the area of a square whose perimeter is eighteen inches is A point B, where A and B each represent two-digit integers. What is the value of A plus B?
		18/4 = 4.5, 4.5 ² = 20.25 and 20 + 25 = 45

"Math is Cool" Masters -- 2020-21 6th Grade <u>Individual Test Solutions</u>

6th	Answer	Solution
1	18	What is the sum of the numbers 3 through 6?
2	[A + B =] 3	As a reduced common fraction, the probability of drawing a red card from a standard deck of cards is A/B. What is the value of A + B? 26 red out of 52 total = 1/2 and 1 + 2 = 3
3	27 [triangles]	How many small black triangles are in the figure shown? 3 * 9 = 27
4	45 [in ²]	What is the number of square inches in the area of a rectangle with a length of 3 inches and a width of 15 inches?
5	315	A proper factor of a number is a factor that is not the number itself. The largest proper factor of 210 is 105. What is the first number greater than 210 that also has 105 as its largest proper factor? 315 = 3 x 105 Since 315 can't be divided evenly by 2, 105 must be the largest proper factor
6	84 [skittles]	Marshawn has eaten 1/7 of the skittles in a bag. There are 72 skittles left in the bag. How many were in the bag to begin with? 72 = 6/7 of the bag, 72/6 = 12 = 1/7 of the bag, 7 * 12 = 84
7	1	Evaluate and express as a whole number: $\frac{12}{37} \cdot \frac{37}{12}$ The product of reciprocals is 1

8	37 [cents]	Cory buys lunch for \$4.63 and pays with a 5-dollar bill. How many cents does he get in change? 5 – 4.63 = 0.37	
9	984 [miles]	The side length of a regular octagon is 123 miles. What is the number of miles in the perimeter of the octagon? 8 x 123 = 984	
10	5	What is the median of the following list of numbers? {6, 2, -1, 12, 8, 4, -3, 9} -3, -1, 2, 4, 6, 8, 9, 12 (4 + 6)/2 = 5	
11	-15	Evaluate and express as an integer: $(2 - 6)^3 + (15 - 22)^2$ $(2 - 6)^3 + (15 - 22)^2 = (-4)^3 + (-7)^2 = -64 + 49 = -15$	
12	2 [hours]	Zhiyuan's pet ant colony doubles in size every two hours. If at one point in time there are 100,000 ants in his colony, how many hours before that time were there 50,000 ants? 50000 x 2 = 100000 so it had 50000 ants 2 hours earlier	
13	3 [ft]	An 18-foot rope is cut 5 times at regular intervals so that each of the resulting pieces are the same length. What is the number of feet in the length of each piece? 5 cuts result in 6 pieces 18/6 equals 3	
14	[x =] 18	Solve for x: 30 - 7.5x = -105 30 - 7.5x = -105 -7.5x = -135 x = 18	
15	15 [pounds of oranges]	Twelve pounds of oranges cost \$24. Eight pounds of bananas cost \$4. How many pounds of oranges have the same cost as sixty pounds of bananas? Oranges cost \$2 per pound, bananas cost \$.50 per pound, so you can get ¼ the amount of oranges for the same cost as bananas. ¼ of 60 is 15.	
16	601	The first four terms of an arithmetic sequence are 7, 13, 19, and 25. What is the 100^{th} term in the sequence? 7 + 99(6) = 601	

17	[A + B =] 9	Ahaan flips a nickel, a dime, and a quarter. As a reduced common fraction, the probability that the nickel is heads, the dime is heads, and the quarter is tails is A/B. What is the value of $A + B$?		
18	96 [minutes]	John can write two paragraphs in 24 minutes. Oliver can write three paragraphs in 48 minutes. How long, in minutes, would it take for them to write fourteen paragraphs together? John: 2 in 24 min = 4 in 48 min Oliver: 3 in 48 min		
19	13 [cards]	Allison is holding 13 cards, Bella is holding 12 cards and Cam is holding 11 cards. Allison gives Bella and Cam 2 cards each. Bella gives Allison 1 card and Cam 3 cards. Cam gives Allison 3 cards and Bella 2 cards. After these trades, what is the number of cards held by the person holding the largest number of cards? A B C 13 12 11 9 14 13 10 10 16 13 12 11		
20	15	All the prime numbers are removed from the set of integers from 10 to 20, inclusive. What is the mean of the remaining numbers?		
21	18 [segments]	What is the number of segments in the figure shown that have endpoints A, B, C, D, E, F, G, H, or I? Note: segments that aren't shown don't count. For instance, you could connect A and I to create a segment \overline{AI} , but since it is not shown, it doesn't count. Only count a segment one time. For example, \overline{AB} is the same as \overline{BA} . 12 short ones: \overline{AB} , \overline{BC} , \overline{DE} , \overline{EF} , \overline{GH} , \overline{HI} , \overline{AD} , \overline{DG} , \overline{BE} , \overline{EH} , \overline{CF} , \overline{FI} 6 long ones: \overline{AC} , \overline{DF} , \overline{GI} , \overline{AG} , \overline{BH} , \overline{CI}		

22	1	Let A and C be two consecutive odd numbers and let B be the mean of A and C. What is $B^2 - AC^2$
		If the first odd number, A, is $2N + 1$, where N is an integer, then the second odd number, C, is $2N + 3$, then B would be $2N + 2$. B ² would be $4N^2 + 8n + 4$ and AC would be $4N^2 + 8N + 3$ and B ² – AC = $4N^2 + 8n + 4 - (4N^2 + 8N + 3) = 1$
23	15	On a coordinate plane, point A (-10, 21) is translated 3 units to the right and down 13 units resulting in point A'. Then point A' is reflected over the y-axis resulting in point A". What is the sum of the coordinates of A"? $A(-10, 21) \rightarrow A'(-7, 8) \rightarrow A''(7, 8)$ 7+8=15
24	98 [inches]	What is the smallest possible perimeter in inches of a rectangle with sides of integer length in inches and an area of 600 square inches? Closest two numbers that multiply to 600 are 24*25, so 2*(24 + 25) =
25	[A + B =] 11	As a reduced common fraction, the mean of the following list of fractions is A/B. What is the value of A + B? $\frac{7}{50}, \frac{11}{50}, \frac{13}{50}, \frac{17}{50}, \frac{19}{50}, \frac{23}{50}, \frac{29}{50}, \frac{31}{50}$ (7 + 11 + 13 + 17 + 19 + 23 + 29 + 31)/50 = 150/50 = 3 3/8 and $3 + 8 = 11$
26	224 [%]	If the circumference of a circle is increased by 80%, by what percent does its area increase? 1.8 ² = 3.24 3.24 - 1 = 2.24, hence 224%
27	1256[7]	Express the base 5 number 3412_5 as a base 7 number. Do not include the base 7 in your answer. $3 \times 5^3 + 4 \times 5^2 + 1 \times 5^1 + 2 \times 5^0 = 482_{10}$ $482 = 343 + 98 + 35 + 6 = 1 \times 7^3 + 2 \times 7^2 + 5 \times 7^1 + 6 \times 7^0 = 1256_7$

28	6 [ways]	How many ways are there to make a sum of 10 by adding together the digits 1, 3 and 7, or any combination of these digits? 1+1+1+1+1+1+1+1+1+1 1+1+1+1+1+1+3 1+1+1+1+
29	90 [minutes]	An 80-gallon bathtub has a faucet and a drain. When the faucet is on and the drain is closed, it takes 15 minutes to fill the bathtub. When the bathtub is full, the faucet is off, and the drain is open, it takes 18 minutes to empty the bathtub. If the drain is open while the faucet is on, how long will it take to fill the bathtub? 80/15 - 80/18 = 16/3 - 40/9 = 48/9 - 40/9 = 8/9 gallons per minute 80/(8/9) = 80*9/8 = 90 minutes
30	[A + B =] 37	As a reduced common fraction, the sum of $\frac{\frac{3}{5}}{7} + \frac{3}{\frac{5}{7}}$ is A/B. What is the value of A + B? (3/5)/7 = 3/35 and 3/(5/7) = 21/5 3/35 + 21/5 = 150/35 = 30/7 and 30 + 7 = 37
31	15325	What is the sum of the first 25 terms of an arithmetic sequence with first term 37 and common difference (the amount added from one term to the next) of 48? 37 + 24(48) = 1189 so this is the 25 th term The sum of the first 25 terms would be 25(37 + 1189)/2 = 25(1226)/2 = 25(613) = 12260 + 3065 = 15325

32	[A + B =] 338	A jar has four red marbles and some other marbles in it. When drawing two marbles out of the jar without replacement, the probability of getting one red and one blue marble is determined using the following calculation: $\left(\frac{4}{17}\right)\left(\frac{7}{16}\right)(2)$ Once the marbles are put back in the jar, as a reduced common fraction, the probability of drawing two blue			
		marbles out of the jar with replacement is A/B, where A is a two-digit whole number and B is a three-digit whole number. What is the value of A + B? 7/17*7/17 = 49/289 and $49 + 289 = 338$			
33	[A + B =] 84	A data set has ten distinct positive whole numbers and a mean of 50. As a decimal to the nearest tenth, the largest possible median of the set is A.B, where A is a two-digit whole number and B is a single digit. What is the value of A + B?			
		The sum of the ten numbers is $10 * 50 = 500$ To make the median as large as possible, make the lowest 4 numbers, 1, 2, 3, and 4 so the other 6 numbers add up to 490. For the median to be as large as possible, the remaining 6 numbers need to be consecutive, or nearly consecutive and they need to add up to 490. 490/6 = 81 and $4/6$, so the last 6 numbers would be 79, 80, 81, 82, 83, 85, because $79 + 80 + 81 + 82 + 83 + 85 = 490$. The median of the set would be $(79 + 80)/2 = 79.5$ and $79 + 5 = 84$			
34	54	Let A = m/n, let B = p/q, and let m, n, p, and q be distinct single-digit positive whole numbers. If A + B = 12, what is the product of m and p? $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
		decreasing pattern in the sums that are made when 9 is over 2, and the largest possible sum that does not include 9. From this sample, it is apparent that there is only one way for a sum of 12 to occur, namely if $m = 9$ and $p = 6$, or if $m = 6$ and $p = 9$. Either way, $m * p = 9 * 6 = 54$.			

35	128 [scenarios]	A math tournament sudden-death round is played as 8th position playing 7th position, and the winner of that round playing 6th position, and so on until the tournament is over. Once you lose a round, you can no longer play. How many distinct paths leading to one					
		For each r independ 128.	c an this round, the ent. For 8	Sudden ere are tw participa	-death r o possible nts, there	winners. would be	ave? . The rounds are ? 7 total rounds. 2 ⁷ =
36	11	What is inequalities $ 3x-2 $	the sur ty? ≤ 16	n of all	integer	solutio	ns to the following
		$3x - 2 \le 1$ $3x \le 18$ $x \le 6$ $-14/3 \le x =$ The integral 11.	6 and ≤ 6 er solutior	3x 3x 3x 3x x x ns are -4,	– 2 ≥ -16 < ≥ -14 ≥ -14/3 -3, -2, -1, (), 1, 2, 3,	4, 5, 6 and their sum is
37	98 [lineups]	A certain sport has three positions: forward, middle, and back, and during a game each team has five players on the field at one time. If the Redtown Raptors team has two forwards, four middles, and three backs on their roster, how many different five-player lineups can they use if there must always be at least one of each position on the field?			orward, middle, n has five players wn Raptors team hree backs on -player lineups can ast one of each		
		Com	bos of For	wards, M	liddles & B	acks	
		F	M1	B	2*4*1	0	-
		1	2	3 2	2*6*3	36	-
		1	3	1	2*4*3	24	
		2	1	2	1*4*3	12	
		2	2	1	1*6*3	18	-
		3	1	1	0*4*3	0	-
	[NI –] 20	When N	Il is ava	luated +	he recu	yo tonda	with 8 zeros
38	[IN -] 59	When is	the lor	narea i	seible vo	i enus	ND Assume N is an
		integer	ine iur	yesi po	331016 90		INF 7133UIIC IN 13 UII
		meyer.					
		Every mul 25 results and 1 mul multiples	tiple of 5 in two te tiple of 2 of 5 and 2	results in rminal ze 5 in N! Th 25 is 39.	one termi ros, so the e largest v	nal zero, re should alue of N	and every multiple of 1 be 6 multiples of 5 having this number of

39	[A + B =] 53	As a reduced common fraction, the probability of getting 3 or more heads when you flip a fair two-sided coin 6 times is A/B. What is the value of A + B? Using Pascal's triangle, we have (1+6+15+20)/64, which simplifies to 21/32 and 21 + 32 = 53		
40	[A =] 29	On a coordinate plane, every point on the line with equation $y = \frac{2}{5}x - 4$ is translated left two units and up five units to create a second line. The number of units in the distance between the original line and the translated line is \sqrt{A} . What is the value of A? The slope of \overline{AB} is the reciprocal of the slope of the lines, so AB equals the distance between the two lines. $AB^2 = 2^2 + 5^2$. $AB = \sqrt{29}$, so $A = 29$		

Multiple Choice Solutions

6th	Answer	Solution			
REFER TO THE FOLLOWING INFORMATION FOR PROBLEMS #1 THROUGH #4. A "diagonal" is any segment that has two vertices of a polygon as endpoints, that is not also a side of the polygon. For example, \overline{AC} is a diagonal in the convex A					
quadrilateral shown to the right, while AB is not. The diagonals of a polygon divide the polygon into a certain number of non-overlapping polygonal regions. For example, the diagonals of a convex quadrilateral divide the quadrilateral into 4 triangular regions as shown.					
The word "con the polygon a ABCD above. one of the int 180°, as show	The word "convex" means that all the interior angles of the polygon are less than 180°, as shown in polygon ABCD above. The word "concave" means that at least one of the interior angles of a polygon is more than 180°, as shown in the unlabeled polygon here.				
The word "regular" means that all the interior angles and all the sides of the polygon are congruent, as in, for example, a square. All regular polygons are convex.					
1	B	What is the number of non-overlapping polygonal regions created by the five diagonals of a regular pentagon? A) 10 B) 11 C) 12 D) 14 E) 15			
		There are 11 non-overlapping regions, 10 triangles and 1 pentagon.			

2	C	Any pentagon, whether convex or concave, has five diagonals. In a concave pentagon, some of the diagonals are partly or entirely outside the original polygon. In the figure shown here, add only the two diagonals that can be drawn completely inside the polygon. What is the number of non-overlapping polygonal regions created as a result? A) 1 B) 2 C) 3 D) 5 E) 10 There are 3 non-overlapping triangular regions created by the two diagonals that can be drawn completely inside the pentagon.
3	Ε	On the heptagon below four diagonals can be drawn having vertex A as an endpoint. If the four diagonals having vertex B are also drawn in the figure, some non-overlapping regions will be created that are either triangles or quadrilaterals. How many of these regions are triangles? A) 9 B) 10 C) 11 D) 12 E) 13 There are 13 non-overlapping triangular regions.

REFER TO THE FOLLOWING INFORMATION FOR PROBLEMS #5 THROUGH #7.

A formula for adding together the terms of a finite arithmetic sequence is $\frac{n}{2}(a_1 + a_n)$, where n = the number of terms in the sequence, a_1 is the first term of the sequence and a_n is the last term of the sequence. This formula works because in an arithmetic sequence, the sum of the first and last terms is the same as the sum of the 2^{nd} and the 2^{nd} to last terms, and the same as the sum of the sequence.

Also, if there are n terms in the sequence, there are $\frac{n}{2}$ pairs of terms each with the same sum. For example, the sum of the terms in the sequence {1, 2, 3, 4, 5, 6, 7, 8, 9} can be determined using this formula. The calculations would be $\left(\frac{9}{2}\right)(1+9) = (4.5)(10) = 45$ and 1+2+3+4+5+6+7+8+9 = 45.

Note: when there is an odd number of terms in the sequence, then there is not a whole number of equal pairs, but the formula still works. In this example there are 4.5 pairs that add up to 10. The extra 0.5 of a pair is always equal to the median of the sequence, which must be the same as $\frac{(a_1+a_n)}{2}$, so you can also use the formula in the form $\frac{n}{2}(a_1 + a_n)$.

5	Α	What is the sum of the terms in the given arithmetic sequence? {34, 39, 44, 49, 54, 59, 64, 69, 74, 79, 84} A) 649 B) 704 C) 1298 D) 1408 E) 15708
		(11/2)(34 + 84) = 5.5(118) = 11(59) = 590 + 59 = 649
6	D	What is the sum of the terms in the given arithmetic sequence? {1.3, 4.9, 8.5, , 26.5, 30.1, 33.7}
		A) 87.5 B) 140 C) 157.5 D) 175 E) 192.5
		The common difference is 3.6. 1.3 + 3.6(9) = 1.3 + 32.4 = 33.7, so there are a total of 10 terms. (10/2)(1.3 + 33.7) = 5(35) = 175

7	C	L al m A	et A be the su Il two-digit mu nultiples of 10 n - (B - C)?	um of all two ultiples of 10 that are also	-digit integers . Let C be the divisible by 3	. Let B be the sum of all two B. What is	sum of o-digit
		A 5	() 4580.5 (230	3) 4630.5	C) 4635	D) 4685	E)
		A B C A	= (90/2)(10 + = (9/2)(10 + 9) = (3/2)(30 + 9) - (B - C) = 490	99) = 45(109) 0) = 4.5(100) 0) = 1.5(120) = 05 - (450 - 18	= 4500 + 405 = = 450 = 180 :0) = 4905 - 27	: 4905 0 = 4635	
USE TH	USE THE FOLLOWING INFORMATION TO SOLVE PROBLEMS #8 THROUGH #10.						
	Dav	High/Low	Tide Time	Height (ft)	Sunrise	Sunset	
	, Sa 18	Highest	3:40 AM	10.9	6:13 AM	8:04 PM	
	Sa 18	Low	10:02 AM	4.2			
	Sa 18	High	3:14 PM	8.4			
	Sa 18	Low	9:12 PM	2.2			
	Tides for Tacoma, Commencement Bay, Sitcum Waterway on April 18, 2020.						
	Day	High/Low	Tide Time	Height (ft)	Sunrise	Sunset	
	Sa 18	Highest	3:44 AM	11.3	6:14 AM	8:04 PM	
		Tides for Bu	udd Inlet, Olym	pia Shoal on A	pril 18, 2020.		
	Day	High/Low	Tide Time	Height (ft)	Sunrise	Sunset	
	Sa 18	Highest	4:23 AM	14.1	6:17 AM	8:05 PM	
8	B	I tl A	n feet, what w he three locat) 12.06 ft [2 2 ft	vas the avera tions on April 3) 12.1 ft	ige of the high 18,2020? C) 12.13 ft	D) 12.16 ft	ich of E)
		(1	L0.9 + 11.3 + 1	4.1)/3 = 36.3/	3 = 12.1		

9	D	Let S equal the number of r Seattle. Let T equal the nur sunset in Tacoma. Let O equ sunrise to sunset in Olympic 2020? A) 2485 min B) 2487 min 2493 min 13:51 = 780 + 51 = 831 = S T = S - 1 = 830 O = S - 3 = 828 831 + 830 + 828 = 2489	minutes from sunrise to sunset in mber of minutes from sunrise to ual the number of minutes from a. What was S + T + O on April 18, C) 2488 min D) 2489 min E)
10	C	The surface area of Elliot E approximately 8.1 square mi water were in Elliot Bay at of water in Elliot Bay at 9:1 change in the surface area tide levels is zero. (1 mile = A) 16.2 ft ³ ft ³ D) 2384606822400 ft ³ 2(8.1)(5280)(5280) = 16.2(27	Bay is calculated to be iles. How many more cubic feet of 10:02 AM compared with the volume 2 PM on April 18, 2020? Assume any of Elliot Bay during the changing = 5280 feet) B) 85536 ft ³ C) 451630080 E) Answer not given. 878400) = 451630080

Team Test Solutions

6th	Answer		Solut	ion	
1	16 [inches]	A rectangle is 32 in number of inches in in its entirety inside The shortest diment possible diameter of 16.	nches long by 4 n the radius of de the rectangl sion of the recta of the circle, whi	46 inches wide. Wi the largest circle le? angle determines t ch is 32, so the rad	hat is the e that can fit he longest lius would be
2	487 cents	Elizabeth has 13 q What is the numbe 13x.25 + 11x.10 + 9	uarters, 11 dim er of cents in t x.05 + 7x.01 = 4	es, 9 nickels, and he value of Elizabo .87, so 487 cents	7 pennies. eth's coins?
3	50 [seconds]	Aditri runs a mile i seconds. How many to run two and a ho rates? 20 seconds longer r	in 370 seconds v seconds longe alf miles, if the	. Paola runs a mile r than Paola will it y continue running x 20 = 50	in 350 take Aditri g at these
4	[3 + 20 =] 23	Mi	ddle School Musi	c and Sports Survey	
			Plays Team Sport	Does Not Play Team Sport	Total
		Plays Instrument	8	3	11
		Does Not Play Instrument	2	7	9
		Total	10	10	20
		According to the c common fraction, t student plays an in A/B. What is the v 3 represents the stu a team sport. 20 is t is 3/20, 3 ± 20 = 22	lata in the two- the probability strument, but value of A + B? udents who play the total numbe	way table, as a re that a randomly s does not play a te an instrument, bu or of students, so th	educed elected am sport is at do not play ne probability

5	[A + B =] 651	As a decimal to the nearest thousandth, the value of y when x = 4 for the equation below is A.B, where A represents a 2-digit whole number and B represents a 3-digit whole number. What is the value of A + B? $y = \frac{3x^2}{2} + \frac{3x}{4} - \frac{3}{8}$
		$3x4^{2}/2 + 3x4/4 - 3/8 = 24 + 3 - 3/8 = 27375 = 26.625$, and 26 + 625 = 651
6	10 [cm]	The volume of a triangular prism is 360 cm ³ . The height of the prism is 12 cm and the base of the triangular base of the prism is 6 cm as shown. What is the number of centimeters in the height of the triangular base, h?
		36h = 360
7	36 [three-digit numbers]	N = 10 What is the number of three-digit positive numbers whose tens digit is half the ones digit? $148, \ldots, 948 - 9$ $136, \ldots, 936 - 9$ $124, \ldots, 924 - 9$ $112, \ldots, 912 - 9$ Or $A = 26$
8	-20	For the equation $5x + 3y = 24$, there are 5 ordered pair solutions, (x, y), when $10 < x < 25$ and in which x and y are both whole numbers. What is the total sum of all the x-values and y- values of these 5 solutions? For every integer substituted for x, the equation will ultimately be solved by dividing by 3, so the x-values with corresponding integer y-values will be spaced apart by 3. Start by substituting 0 for x, then y = 8. Counting by 3s from there give the solutions where both values are integers in the given domain: (12, -12), (15, -17), (18, - 22), (21, -27), and (24, -32). 12 + -12 + 15 + -17 + 18 + -22 + 21 + -27 + 24 + -32 = -20

9 ²⁷	The figure shown is a quarter of a circle with a radius of 6 cm. Line segment \overline{AB} is added to create $\triangle ABC$ as shown. The area of the region (in square centimeters) that is inside the quarter circle, but outside $\triangle ABC$ can be expressed in the form $D\pi - E$, where D and E are positive integers. What is the value of D + E? Quarter circle area = $36\pi/4 = 9\pi$ Area of $\triangle ABC = 6x6/2 = 18$ Area of the region inside the quarter circle but outside the triangle = $9\pi - 18$, so D = 9 and E = 18, and D + E = 27.
10 [E + F =] 7	A formula to derive Perfect Numbers is $2^{p-1}(2^p - 1)$, where p is any positive prime number. Triangular Numbers can be derived with the formula $\frac{n(n+1)}{2}$, where n is a positive whole number. According to the following Venn Diagram, as a reduced common fraction, the probability that a randomly drawn number from inside one of the three ovals is in one of the four regions labeled A, B, C, or D, is E/F. What is the value of E + F? Numbers from 1 - 100 Perfect Numbers C Multiples of 7 Perfect numbers: 6, 28 Triangular numbers: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91 Multiples of 7: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98 Both perfect numbers are also triangular numbers ot hey will be in A, B, C, or D. In addition to 28, multiples of 7 that are also triangular numbers are 21 and 91, so there are a total of 4 numbers in A, B, C, or D and that will be the top number in the probability fraction. To get the bottom number, there are 13 triangular numbers and 14 multiples of 7. There are 3 numbers that are both, 21, 28, and 91, so the bottom number will be 13 + 14 - 3 = 24.

Triple Jump Solutions

6th	Answer	Solution	
1	8	What is the sum of the given sequence	2?
		1+1-1+2-2+3-3+4-4+5-5+	6 - 6 + 7?
		1+1-1+2-2+3-3+4-4+5-5+0	6 – 6 + 7 = 8
2	37	What is the largest prime factor of 1	11?
2	4 [roctanglos]	111 = 3 * 37, so the answer is 37.	10
3	4 [rectangles]	What is the maximum number	18 in
		of 8 inch by 9 inch rectangles	
		hu 18 inch rectangle?	
		by 10 men rectangles	
		$16/8 = 2$ and $18/9 = 2$ so 2×2	
		10/8 - 2 and 10/9 - 2, so 2 = 2	
4	9 [marbles]	A jar has 21 marbles and there are siv	< different colors,
		including red. As a reduced common fr	raction, the probability
		that a randomly chosen marble is red	is 3/7. How many red
		marbles are in the jar?	
		P(red) = r/21 = 3/7, so 7r = 63, and r = 9	
5	884	What is the positive difference betwe	een the largest three-
		digit multiple of 37 and the smallest t	hree-digit multiple of
		23?	
		999 is the largest three-digit multiple of	37 (37 * 27) and 115 is
6	[v -] 45	the smallest three-digit multiple of 23 (2	23 * 5). 999 – 115 = 884
0	[X –] 45	What is the largest whole number value	le of x that satisfies the
		tollowing inequality?	
		2x + 7 < 98	
		$3y \pm 7 \neq 00 \rightarrow 3y \neq 01 \rightarrow y \neq 45 = a + ba$	largest whole number
		solution is 45	largest whole number

7	25 [ordered pairs]	Let A and B each represent a whole number between 1 and 50, inclusive. It is possible for A and B to represent the same whole number. How many ordered pairs in the form (A, B) are there, such that $A + B = 76$? (26, 50), (27, 49),, (49, 27), (50, 26)
8	[A + B =] 22	Jen rides her bike to the grocery store and back along the same route. Her total travel time is 28 minutes. Because of hills, her average speed in miles per hour on the way to the store is $3/5$ of her average speed in miles per hour on the way back home. The number of minutes it takes her to ride to the store is A.B, where A is a 2-digit number and B is a single digit. What is the value of $A + B$?
		Using the d = rt formula, d _{tostore} = $(3r/5)(28 - t)/60$ and d _{home} = rt/60, so $(3r/5)(28 - t) = rt \rightarrow 3/5(28 - t) = t \rightarrow 84/5 = 8t/5 \rightarrow t = 10.5$ minutes on the way home and 17.5 minutes on the way to the store. 17 + 5 = 22
9	160 [cm ²]	In Trapezoid ABCD, AD = 20 cm, BC = 32 cm, and point E is the intersection of \overline{AC} and \overline{BD} . The area of ΔADE is 62.5 cm ² . What is the number of square centimeters in the area of ΔBCE ? $\Delta ADE \sim \Delta BCE$, so the sides are proportional and in a ratio of 20/32 = 5/8. The areas are in a ratio of 5 ² /8 ² = 25/64, so 25/64 = 62.5/x, where x is the area of ΔBCE . Two and a half times 25 is 62.5, so x = 2.5*64 = 160.

10	[<i>α</i> + <i>β</i> =] 3	Let $A = \left(\frac{-7}{4}\right)^2 + \frac{-29}{16}$, let $B = A^2 + \frac{-29}{16}$, let $C = B^2 + \frac{-29}{16}$, and so on through the 26 letters of the alphabet. As a reduced common fraction, $Z = \alpha/\beta$. If α represents a negative integer, what is the value of $\alpha + \beta$?
		A = $49/16 - 29/16 = 20/16 = 5/4$ B = $25/16 - 29/16 = -4/16 = -1/4$ C = $1/16 - 29/16 = -28/16 = -7/4$ Since $-7/4$ was the input resulting in A and now it will be the input resulting in D, D = A, E = B, F = C, and so on with these three values repeating every three letters. Twenty-four is a multiple of 3, so the 24 th letter X = C, the 25 th letter Y = A, and the 26 th letter Z = B = $-1/4$ and $-1 + 4 = 3$

College Bowl Round #1 Solutions

6th	Answer	Solution
1	150 [cents]	Prisha goes to the store and buys a thirty-two-pack of energy drinks. The case costs forty-eight dollars. How many cents does one energy drink cost? 48/32 = 1.5 or \$1.50 = 150 cents
2	[x =] 15	When a number, X, is multiplied by three, then by four, then by ten, the result is one thousand eight hundred. What is the value of X? 3*4*10*x = 1800 120x = 1800, x = 15
3	4 [days]	Five people can do one job in eight days. How many days would it take twenty people to do two of the same job? 5 people:1 job:8days = 20 people:1 job: 2 days = 20 people: 2 jobs:4 days
4	[M + B =] -1	A line with the equation $y = 3x + 4$ is rotated one hundred eighty degrees around the origin on a coordinate plane. When the equation of the new line is written in $y = mx + b$ form, what is the value of m + b? (x, y) \rightarrow (-x, -y) is the rule for a 180° rotation about the origin. The points with coordinates (-1, 1) and (-2, -2) on line j have images at (1, -1) and (2, 2) on line j'. The equation for line j' is y = 3x - 4. So, $3 + -4 = -1$.

5	7 [snaps]	A bacteria population is one million. Every time Thanos snaps his fingers, the population is cut in half. How many times would he need to snap his fingers for the population to drop below ten thousand? If (x, y) = (snap #, pop), then (1, 500000), (2, 250000), (3, 125000), (4, 62500), (5, 31250), (6, 15625), (7, 7812.5). On the 7 th snap it goes below 10000.
6	32	Row zero of Pascal's triangle is one. Row one is one-one. Row two is one-two-one. What is the sum of the numbers in the fifth row of Pascal's triangle? 1 + 5 + 10 + 10 + 5 + 1 = 32 or $2^5 = 32$
7	[A + B =] 37	Mei rolls three fair six-sided dice. As a reduced common fraction, the probability of getting the same number on all three dice is A/B. What is the value of A plus B? 1/6*1/6*1/6*6 = 6/216 = 1/36 The extra *6 is because there are 6 ways the three numbers could be the same. So, 1 + 36 = 37.
8	11 [cards]	Abel has six cards, Bonita has seven cards, and Cherise has eight cards. Cherise gives half of her cards to Abel and half of her cards to Bonita. How many cards does Bonita now have? 8/2 = 4, 4 + 7 = 11
9	[A + B =] 39	As a decimal, the mean of the two-digit integers from thirty-one to thirty-eight inclusive is A.B, where A is a two-digit whole number and B is a single digit. What is the value of A plus B? Since they are consecutive integers, it's an arithmetic sequence and the mean of all the numbers is the same as the average of the first and last number, so $(31 + 38)/2 = 69/2 =$ 34.5. So 34 + 5 = 39
10	350 [min]	Let seventy divided by twelve equal X. How many minutes are in X hours? 70/12*60 = 350

College Bowl Round #2 Solutions

6th	Answer	Solution
1	72 [centimeters]	A vine grows three centimeters every two days. How many centimeters will it grow in forty-eight days? 3*24 = 72
2	[A =] 45	As a decimal, 1/5 plus 1/4 is 0.A (zero point A), where A represents a two-digit whole number. What is the value of A? 1/5 + 1/4 = 5/20 + 4/20 = 9/20 = 0.45, so A = 45
3	84 [in ²]	What is the number of square inches in the area of a rectangle if the length is twelve inches and the width is seven inches?
4	8 [letters]	Tony Stark was born on a Friday in nineteen seventy, a non-leap year. How many letters are in the day of the week of his first birthday? 7*52 = 364 and there are 365 days in a non-leap year, so his 1 st birthday would have been one day after Friday, or Saturday, and Saturday has 8 letters
5	2 [numbers]	One set of numbers contains positive composite numbers less than twenty. A second set of numbers contains positive odd numbers less than twenty. How many numbers are members of both sets? Set 1 = {4, 6, 8, 9, 10, 12, 14, 15, 16, 18} Set 2 = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19} 9 and 15 are members of both sets
6	1,260 [ways]	How many distinct ways are there to rearrange the letters in the word RAINING? 7!/(2!*2!) = 5040/4 = 1260

7	[x=] 6	Solve for x: $\frac{5x-6}{x-3} = 8$ (5x-6)/(x-3) = 8
		5x - 6 = 8x - 24, $3x = 18$, $x = 6$
8	27 [square feet]	A rectangle has dimensions of three feet by three yards. How many square feet are in its area?
		3 yards = 9 feet, so 3*9 = 27
9	32 [kids]	Forty kids are loaded onto a bus and twenty percent of them forgot to put on their seatbelts. How many kids remembered to put their seatbelts on? 0.8*40 = 32
10	784	Let A = 1 + 2 + 3 + 4 + 5 + 6 + 7. What is A squared?
		1 + 2 + 3 + 4 + 5 + 6 + 7 = 28
		28 ² = 784

College Bowl Round #3 Solutions

6 th	Answer	Solution
1	62 [days]	How many days are there from April eighteenth to June eighteenth inclusive? 4/18 to 4/30 = 13 days May has 31 days 6/1 to 6/18 = 18 days 13 + 31 + 18 = 62
2	8421	In a certain four-digit number, the digit in the ones place is half the digit in the tens place, which is half the digit in the hundreds place, which is half the digit in the thousands place. What is this four-digit number? 1 is in the ones place, 2 is in the tens place, 4 is in the hundreds place, and 8 is in the thousands place, so the number is 8421
3	8 [inches]	The area of a triangle is 124 square inches. The base of the triangle is 31 inches. How many inches are in the height of the triangle? 31h/2 = 124, 31h = 248, h = 8
4	6	Let A/B and C/D represent two fractions. A, B, C, and D are each replaced with one of the digits from one through four (each digit is used only one time). What is the largest possible value of A/B times C/D? 4/2*3/1 = 6
5	[A =] 225	A circle has an area of 144π square centimeters. Its radius is increased by 25 percent to make a new circle. In terms of π , the number of square centimeters in the area of the new circle is $A\pi$. What is the value of A? A = 144π , r = 12. Increasing 12 by 25% means the new radius is 15. $15^2\pi = 225\pi$, so A = 225

6	22 [min]	Fernando averaged thirty miles per hour driving to work. On his drive back home along the same route, he averaged twenty-five miles per hour, and it took two minutes longer than the drive to work. What was the total number of minutes spent driving to and from work? D = rt, D = 30*t/60 and $D = 25(t + 2)/60$, so $30t/60 = 25(t + 2)/60$ or $30t = 25(t + 2)$, 30t = 25t + 50, 5t = 50, t = 10 and $t + 2 = 12$, 10 + 12 = 22
7	9,000,000 or 9 million [numbers]	How many positive seven-digit numbers are there? The number of numbers from 1000000 to 9999999 is 9999999
	63	-999999 = 9000000 The first positive add number is and What is the thirty
8		The first positive odd number is one. What is the thirty- second positive odd number? The first positive even number is 2. The 32 nd positive even number is 64, so the 32 nd positive odd number is 63
•	[A + B =] 18	Two cards are drawn from a standard deck without
9		replacement. As a reduced common fraction, the probability that both are hearts is A/B. What is the value of A + B? 13/52*12/51 = 1/4*4/17 = 1/17, so A + B = 18
10	400	How many minutes will Pavarotti sing if he sings for six and
TO	[minutes]	two-thirds hours?
		$6\frac{2}{3} = 20/3$ and $20/3*60 = 400$